Abstract

Part 2 of this paper is focused on modeling the acoustic emission (AE) energy rate as a function of the specific cortical bone microstructures (viz., osteon, interstitial matrix, lamellar bone, and woven bone) and the depth-of-cut encountered by the bone sawtooth. First, the AE signal characteristics from the sawing experiments (in Part 1) are related to the pure haversian and pure plexiform regions of the cut. Using the cutting force predictions from Part 1 as input, the AE energy rate is then modeled in terms of the energies dissipated in the shearing and plowing zones encountered by the rounded cutting edge. For this calculation, the rounded edge geometry of the sawtooth is modeled as a combination of (i) shear-based cutting from a negative rake cutting tool and (ii) plowing deformation from a round-nose indenter. The spread seen in the AE energy rate is captured by modeling the variations in sawed surface height profile, tool cutting-edge geometry, and porosity of the bone. The five AE model coefficients are calibrated over a range of clinically relevant depth-of-cuts using pure haversian regions (comprising of osteon and interstitial matrix) and pure plexiform regions (comprising of lamellar bone and woven bone). The calibrated model is then used to make predictions in the transition region between the haversian and plexiform bone, which is characterized by gradient structures involving varying percentages of osteon, interstitial matrix, lamellar bone, and woven bone. The model predictions show a good correlation with the experimentally measured values. The validated AE model is useful for process monitoring both in terms of its ability to predict AE energy rate trends and cutting force variations, based on the differences in the underlying bone microstructures.

References

1.
Scruby
,
C. B.
,
1987
, “
An Introduction to Acoustic Emission
,”
J. Phys. E: Sci. Instrum.
,
20
(
8
), pp.
946
953
.
2.
Sause
,
M. G. R.
,
2016
,
Acoustic Emission
,
Springer Series in Materials Science
,
Switzerland
, pp.
131
359
.
3.
Bourne
,
K. A.
,
Jun
,
M. B. G.
,
Kapoor
,
S. G.
, and
DeVor
,
R. E.
,
2008
, “
An Acoustic Emission-Based Method for Determining Contact Between a Tool and Workpiece at the Microscale
,”
ASME J. Manuf. Sci. Eng.
,
130
(
3
), p.
031101
.
4.
Gómez
,
M. P.
,
Hey
,
A. M.
,
Ruzzante
,
J. E.
, and
D’Attellisc
,
C. E.
,
2010
, “
Tool Wear Evaluation in Drilling by Acoustic Emission
,”
Phys. Procedia
,
3
(
1
), pp.
819
825
.
5.
Min
,
S.
,
Lidde
,
J.
,
Raue
,
N.
, and
Dornfeld
,
D.
,
2011
, “
Acoustic Emission Based Tool Contact Detection for Ultra-Precision Machining
,”
CIRP Ann.
,
60
(
1
), pp.
141
144
.
6.
Park
,
Y.-J.
,
1995
, “A Study of Acoustic Emissions in Orthogonal Cutting Operations,”
Master of Engineering (Hons) Thesis
,
University of Wollongong
,
Australia
.
7.
Niknam
,
S. A.
, and
Songmene
,
V.
,
2017
, “
Burr Formation and Correlation With Cutting Force and Acoustic Emission Signals
,”
Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf.
,
231
(
3
), pp.
399
414
.
8.
Dornfeld
,
D. A.
, and
Kannatey-Asibu
,
E.
,
1980
, “
Acoustic Emission During Orthogonal Metal Cutting
,”
Int. J. Mech. Sci.
,
22
(
5
), pp.
285
296
.
9.
Hase
,
A.
,
Wada
,
M.
,
Koga
,
T.
, and
Mishina
,
H.
,
2014
, “
The Relationship Between Acoustic Emission Signals and Cutting Phenomena in Turning Process
,”
Int. J. Adv. Manuf. Technol.
,
70
(
5–8
), pp.
947
955
.
10.
Gaja
,
H.
, and
Liou
,
F.
,
2016
, “
Automatic Detection of Depth of Cut During End Milling Operation Using Acoustic Emission Sensor
,”
Int. J. Adv. Manuf. Technol.
,
86
(
9–12
), pp.
2913
2925
.
11.
Zhang
,
G.
,
Zeng
,
Y.
,
Zhang
,
W.
,
Zhou
,
H.
,
Wen
,
Z.
, and
Yao
,
Y.
,
2016
, “
Monitoring for Damage in Two-Dimensional Pre-Stress Scratching of SiC Ceramics
,”
Int. J. Precis. Eng. Manuf.
,
17
, pp.
1425
1432
.
12.
Perfilyev
,
V.
,
Lapsker
,
I.
,
Laikhtman
,
A.
, and
Rapoport
,
L.
,
2017
, “
Scratching of Copper and Silicon: Acoustic Emission Analysis
,”
Tribol. Lett.
,
65
, p.
24
.
13.
Lee
,
W. K.
,
Ratnam
,
M. M.
, and
Ahmad
,
Z. A.
,
2017
, “
Detection of Chipping in Ceramic Cutting Inserts From Workpiece Profile During Turning Using Fast Fourier Transform (FFT) and Continuous Wavelet Transform (CWT)
,”
Precis. Eng.
,
47
, pp.
406
423
.
14.
Câmara
,
M. A.
,
Abrão
,
A. M.
,
Campos Rubio
,
J. C.
,
Godoy
,
G. C. D.
, and
Cordeiro
,
B. S.
,
2016
, “
Determination of the Critical Undeformed Chip Thickness in Micromilling by Means of the Acoustic Emission Signal
,”
Precis. Eng.
,
46
, pp.
377
382
.
15.
Lee
,
Y.
,
Chang
,
A. K.
, and
Dornfeld
,
D. A.
,
2002
, “
Acoustic Emission Monitoring for the Diamond Machining of Oxygen-Free High-Conductivity Copper
,”
J. Mater. Process. Technol.
,
127
(
2
), pp.
199
205
.
16.
Griffin
,
J.
, and
Chen
,
X.
,
2016
, “
Real-Time Simulation of Neural Network Classifications From Characteristics Emitted by Acoustic Emission During Horizontal Single Grit Scratch Tests
,”
J. Intell. Manuf.
,
27
, pp.
507
523
.
17.
Barry
,
J.
,
Byrne
,
G.
, and
Lennon
,
D.
,
2001
, “
Observations on Chip Formation and Acoustic Emission in Machining Ti-6Al-4V Alloy
,”
Int. J. Mach. Tools Manuf.
,
41
(
7
), pp.
1055
1070
.
18.
Saeedifar
,
M.
,
Ahmadi Najafabadi
,
M.
,
Mohammadi
,
K.
,
Fotouhi
,
M.
,
Hosseini Toudeshky
,
H.
, and
Mohammadi
,
R.
,
2018
, “
Acoustic Emission-Based Methodology to Evaluate Delamination Crack Growth Under Quasi-Static and Fatigue Loading Conditions
,”
J. Nondestr. Eval.
,
37
(
1
), pp.
1
13
.
19.
Prakash
,
R.
,
Krishnaraj
,
V.
,
Zitoune
,
R.
, and
Sheikh-Ahmad
,
J.
,
2016
, “
High-Speed Edge Trimming of CFRP and Online Monitoring of Performance of Router Tools Using Acoustic Emission
,”
Materials
,
9
(
10
), p.
798
.
20.
Piotrkowski
,
R.
,
Gallego
,
A.
,
Castro
,
E.
,
García-Hernandez
,
M. T.
, and
Ruzzante
,
J. E.
,
2005
, “
Ti and Cr Nitride Coating/Steel Adherence Assessed by Acoustic Emission Wavelet Analysis
,”
NDT&E Int.
,
38
(
4
), pp.
260
267
.
21.
Wang
,
B.
, and
Liu
,
Z.
,
2017
, “
Acoustic Emission Signal Analysis During Chip Formation Process in High Speed Machining of 7050-T7451 Aluminum Alloy and Inconel 718 Superalloy
,”
J. Manuf. Processes
,
27
, pp.
114
125
.
22.
Rimpault
,
X.
,
Chatelain
,
J. F.
,
Klemberg-Sapieha
,
J. E.
, and
Balazinski
,
M.
,
2016
, “
Fractal Analysis of Cutting Force and Acoustic Emission Signals During CFRP Machining
,”
Procedia CIRP
,
46
, pp.
143
146
.
23.
Suresh Kumar
,
C.
,
Arumugam
,
V.
, and
Santulli
,
C.
,
2017
, “
Characterization of Indentation Damage Resistance of Hybrid Composite Laminates Using Acoustic Emission Monitoring
,”
Composites, Part B
,
111
, pp.
165
178
.
24.
Goodwin
,
B. D.
,
Pintar
,
F. A.
, and
Yoganandan
,
N.
,
2017
, “
Acoustic Emission Signatures During Failure of Vertebra and Long Bone
,”
Ann. Biomed. Eng.
,
45
(
6
), pp.
1520
1533
.
25.
Aggelis
,
D. G.
,
Soulioti
,
D. V.
,
Sapouridis
,
N.
,
Barkoula
,
N. M.
,
Paipetis
,
A. S.
, and
Matikas
,
T. E.
,
2011
, “
Acoustic Emission Characterization of the Fracture Process in Fibre Reinforced Concrete
,”
Constr. Build. Mater.
,
25
(
11
), pp.
4126
4131
.
26.
Strantza
,
M.
,
Louis
,
O.
,
Polyzos
,
D.
,
Boulpaep
,
F.
,
Van Hemelrijck
,
D.
, and
Aggelis
,
D. G.
,
2014
, “
Measurement of Elastic Wave Dispersion on Human Femur Tissue
,”
Smart Sensor Phenomena, Technology, Networks, and Systems Integration 2014
,
San Diego, CA
, Vol.
9062
, p.
90620T
.
27.
Liao
,
Z.
, and
Axinte
,
D. A.
,
2016
, “
On Monitoring Chip Formation, Penetration Depth and Cutting Malfunctions in Bone Micro-Drilling via Acoustic Emission
,”
J. Mater. Process. Technol.
,
229
, pp.
82
93
.
28.
James
,
T. P.
,
Pearlman
,
J. J.
, and
Saigal
,
A.
,
2012
, “
Rounded Cutting Edge Model for the Prediction of Bone Sawing Forces
,”
ASME J. Biomech. Eng.
,
134
(
7
), p.
071001
.
29.
Conward
,
M.
, and
Samuel
,
J.
,
2016
, “
Machining Characteristics of the Haversian and Plexiform Components of Bovine Cortical Bone
,”
J. Mech. Behav. Biomed. Mater.
,
60
, pp.
525
534
.
30.
Devin
,
L. N.
, and
Rychev
,
S. V.
,
2017
, “
The Correlation Model of Acoustic Emission in Fine Diamond Turning
,”
J. Superhard Mater.
,
39
(
1
), pp.
41
48
.
31.
Griffin
,
J. M.
, and
Chen
,
X.
,
2006
, “
Classification of the Acoustic Emission Signals of Rubbing, Ploughing and Cutting During Single Grit Scratch Tests
,”
Int. J. Nanomanuf.
,
1
(
2
), pp.
189
209
.
32.
Liu
,
Z.
,
Shi
,
Z.
, and
Wan
,
Y.
,
2013
, “
Definition and Determination of the Minimum Uncut Chip Thickness of Microcutting
,”
Int. J. Adv. Manuf. Technol.
,
69
(
5–8
), pp.
1219
1232
.
33.
Abdel-Wahab
,
A. A.
,
Alam
,
K.
, and
Silberschmidt
,
V. V.
,
2011
, “
Analysis of Anisotropic Viscoelastoplastic Properties of Cortical Bone Tissues
,”
J. Mech. Behav. Biomed. Mater.
,
4
(
5
), pp.
807
820
.
34.
Merchant
,
M. E.
,
1944
, “
Basic Mechanics of the Metal Cutting Process
,”
ASME J. Appl. Mech.
,
11
(
A
), pp.
168
175
.
35.
Liao
,
Z.
, and
Axinte
,
D. A.
,
2016
, “
On Chip Formation Mechanism in Orthogonal Cutting of Bone
,”
Int. J. Mach. Tools Manuf.
,
102
, pp.
41
55
.
36.
Manilay
,
Z.
,
Novitskaya
,
E.
,
Sadovnikov
,
E.
, and
McKittrick
,
J.
,
2013
, “
A Comparative Study of Young and Mature Bovine Cortical Bone
,”
Acta Biomater.
,
9
(
2
), pp.
5280
5288
.
37.
Rangwala
,
S.
, and
Dornfeld
,
D.
,
1991
, “
A Study of Acoustic Emission Generated During Orthogonal Metal Cutting—1: Energy Analysis
,”
Int. J. Mech. Sci.
,
33
(
6
), pp.
471
487
.
38.
Conward
,
M.
,
2018
,
Effects of Haversian and Plexiform Components on the Machining of Bovine Cortical Bone
,
Rensselaer Polytechnic Institute, PhD Dissertation
,
ProQuest Publishing, 13419372
.
39.
Kim
,
J. H.
,
Niinomi
,
M.
,
Akahori
,
T.
,
Takeda
,
J.
, and
Toda
,
H.
,
2006
, “
Effect of Microstructure on Fatigue Strength of Bovine Compact Bones
,”
JSME Int. J., Ser. A
,
48
(
4
), pp.
472
480
.
40.
Willems
,
N. M. B. K.
,
Langenbach
,
G. E. J.
,
Everts
,
V.
, and
Zentner
,
A.
,
2014
, “
The Microstructural and Biomechanical Development of the Condylar Bone: A Review
,”
Eur. J. Orthod.
,
36
(
4
), pp.
479
485
.
41.
Hughes
,
E. R.
,
Leighton
,
T. G.
,
White
,
P. R.
, and
Petley
,
G. W.
,
2007
, “
Investigation of an Anisotropic Tortuosity in a Biot Model of Ultrasonic Propagation in Cancellous Bone
,”
J. Acoust. Soc. Am.
,
121
(
1
), pp.
568
574
.
42.
Patterson-Kane
,
C.
, and
Firth
,
E. C.
,
2013
, “
Chapter 13 – Tendon, Ligament, Bone, and Cartilage: Anatomy, Physiology, and Adaptations to Exercise and Training,” The Athletic Horse
, 2nd ed.,
Elsevier
, pp.
202
242
.
You do not currently have access to this content.