Abstract

Co-flow water cavitating jets induce compressive residual stress through cavitation impacts produced by the collapse of the cavitation cloud. Co-flow water cavitation peening causes minimal surface alteration when compared with conventional processes such as shot peening, which is a major advantage. However, enhancement of cavitation intensity for co-flow water cavitation peening nozzles is required for practical applications requiring greater process capability. Scaling of co-flow cavitation peening nozzles to achieve greater cavitation intensity requires higher flowrates, thus requiring pumps of higher capacities. In contrast, organ pipe geometry nozzles can enhance cavitation intensity without a significant increase in pump capacity and have been used in deep-sea drilling applications. The objective of this work is to study the effects of organ pipe inner jet nozzle geometry on co-flow water cavitation intensity and peening performance relative to a standard (unexcited) inner jet nozzle geometry through experiments on aluminum alloy Al 7075-T651. Nozzle performance is characterized via extended mass loss and strip curvature tests, high-speed visualization of the cavitation cloud, analysis of impulse pressures, and through-thickness residual stress measurements. It is found that the optimum organ pipe inner jet nozzle geometry enhances the mass loss and peak strip curvature by 61% and 66%, respectively, when compared with the unexcited inner jet nozzle. Residual stress measurements show that the organ pipe inner jet nozzle produces deeper compressive residual stresses in the material than the unexcited inner jet nozzle.

References

1.
Schijve
,
J.
,
1994
, “
Fatigue of Aircraft Materials and Structures
,”
Int. J. Fatigue
,
16
(
1
), pp.
21
32
. 10.1016/0142-1123(94)90442-1
2.
Suresh
,
S.
,
1998
,
Fatigue of Materials
,
Cambridge University Press
,
Cambridge, UK
.
3.
Schijve
,
J.
,
2009
, “
Fatigue Damage in Aircraft Structures, Not Wanted, But Tolerated?
,”
Int. J. Fatigue
,
31
(
6
), pp.
998
1011
. 10.1016/j.ijfatigue.2008.05.016
4.
Peyre
,
P.
,
Fabbro
,
R.
,
Merrien
,
P.
, and
Lieurade
,
H.
,
1996
, “
Laser Shock Processing of Aluminium Alloys. Application to High Cycle Fatigue Behaviour
,”
Mater. Sci. Eng. A
,
210
(
1–2
), pp.
102
113
. 10.1016/0921-5093(95)10084-9
5.
Montross
,
C.
,
Wei
,
T.
,
Ye
,
L.
,
Clark
,
G.
, and
Mai
,
Y.
,
2002
, “
Laser Shock Processing and its Effects on Microstructure and Properties of Metal Alloys: a Review
,”
Int. J. Fatigue
,
24
(
10
), pp.
1021
1036
. 10.1016/S0142-1123(02)00022-1
6.
Chen
,
B.
,
Huang
,
B.
,
Liu
,
H.
, and
Li
,
X.
,
2014
, “
Surface Nanocrystallization Induced by Shot Peening and its Effect on Corrosion Resistance of 6061 Aluminum Alloy
,”
J. Mater. Res.
,
29
(
24
), pp.
3002
3010
. 10.1557/jmr.2014.323
7.
Rodopoulos
,
C.
,
Curtis
,
S.
,
de los Rios
,
E.
, and
SolisRomero
,
J.
,
2004
, “
Optimisation of the Fatigue Resistance of 2024-T351 Aluminium Alloys by Controlled Shot Peening—Methodology, Results and Analysis
,”
Int. J. Fatigue
,
26
(
8
), pp.
849
856
. 10.1016/j.ijfatigue.2004.01.003
8.
Luong
,
H.
, and
Hill
,
M.
,
2008
, “
The Effects of Laser Peening on High-Cycle Fatigue in 7085-T7651 Aluminum Alloy
,”
Mater. Sci. Eng. A
,
477
(
1–2
), pp.
208
216
. 10.1016/j.msea.2007.05.024
9.
El-Axir
,
M.
,
2007
, “
An Investigation Into the Ball Burnishing of Aluminium Alloy 6061-T6
,”
Proc. Inst. Mech. Eng. B
,
221
(
12
), pp.
1733
1742
. 10.1243/09544054JEM818
10.
Ramulu
,
M.
,
Kunaporn
,
S.
,
Jenkins
,
M.
,
Hashish
,
M.
, and
Hopkins
,
J.
,
2002
, “
Fatigue Performance of High-Pressure Waterjet-Peened Aluminum Alloy
,”
ASME J. Pressure Vessel Technol.
,
124
(
1
), pp.
118
123
. 10.1115/1.1398553
11.
Soyama
,
H.
,
Kenichi
,
S.
, and
Masumi
,
S.
,
2002
, “
Improvement of Fatigue Strength of Aluminum Alloy by Cavitation Shotless Peening
,”
ASME J. Eng. Mater. Technol.
,
124
(
2
), pp.
135
139
. 10.1115/1.1447926
12.
Mhaede
,
M.
,
2012
, “
Influence of Surface Treatments on Surface Layer Properties, Fatigue and Corrosion Fatigue Performance of AA7075 T73
,”
Mater. Des.
,
41
, pp.
61
66
. 10.1016/j.matdes.2012.04.056
13.
Gao
,
Y.
,
2011
, “
Improvement of Fatigue Property in 7050–T7451 Aluminum Alloy by Laser Peening and Shot Peening
,”
Mater. Sci. Eng. A
,
528
(
10–11
), pp.
3823
3828
. 10.1016/j.msea.2011.01.077
14.
Tan
,
Y.
,
Wu
,
G.
,
Yang
,
J.
, and
Pan
,
T.
,
2004
, “
Laser Shock Peening on Fatigue Crack Growth Behaviour of Aluminium Alloy
,”
Fatigue Fract. Eng. Mater. Struct.
,
27
(
8
), pp.
649
656
. 10.1111/j.1460-2695.2004.00763.x
15.
Vo
,
L.
, and
Stephens
,
R.
,
2009
, “
Effect of Shot and Laser Peening on SAE 1010 Steel Tubes with a Transverse Center Weld Subjected to Constant and Variable Amplitude Loading
,”
Proceedings of 12th International Conference of Fracture.
16.
Salahshoor
,
M.
, and
Guo
,
Y.
,
2011
, “
Surface Integrity of Biodegradable Magnesium–Calcium Orthopedic Implant by Burnishing
,”
J. Mech. Behav. Biomed. Mater.
,
4
(
8
), pp.
1888
1904
. 10.1016/j.jmbbm.2011.06.006
17.
Chillman
,
A.
,
Ramulu
,
M.
, and
Hashish
,
M.
,
2007
, “
Waterjet Peening and Surface Preparation at 600MPa: A Preliminary Experimental Study
,”
J. Fluids Eng.
,
129
(
4
), pp.
485
490
. 10.1115/1.2436580
18.
Odhiambo
,
D.
, and
Soyama
,
H.
,
2003
, “
Cavitation Shotless Peening for Improvement of Fatigue Strength of Carbonized Steel
,”
Int. J. Fatigue.
,
25
(
9–11
), pp.
1217
1222
. 10.1016/S0142-1123(03)00121-X
19.
Jones
,
I.
, and
Edwards
,
D.
,
1960
, “
An Experimental Study of the Forces Generated by the Collapse of Transient Cavities in Water
,”
J. Fluid Mech.
,
7
(
4
), pp.
596
609
. 10.1017/S0022112060000311
20.
Soyama
,
H.
,
2004
, “
Introduction of Compressive Residual Stress Using a Cavitating jet in air
,”
J. Eng. Mater. Technol.
,
126
(
1
), pp.
123
128
. 10.1115/1.1631434
21.
Vijay
,
M.
,
Zou
,
C.
,
Hu
,
S.
,
Remisz
,
J.
, and
Tavoularis
,
S.
,
1992
, “
A Study of the Practicality of Cavitating Water Jets
,”
Proc. Jet Cutting Technol.
,
13
, pp.
75
99
. 10.1007/978-94-011-2678-6_6
22.
Soyama
,
H.
, and
Macodiyo
,
D.
,
2003
, “
Improvement of Fatigue Strength on Stainless Steel by Cavitating Jet in Air
,”
Fifth International Symposium on Cavitation (CAV).
23.
Soyama
,
H.
,
Kikuchi
,
T.
,
Nishikawa
,
M.
, and
Takakuwa
,
O.
,
2011
, “
Introduction of Compressive Residual Stress Into Stainless Steel by Employing a Cavitating Jet in Air
,”
Surf. Coat. Technol.
,
205
(
10
), pp.
3167
3174
. 10.1016/j.surfcoat.2010.11.031
24.
Marcon
,
A.
,
Melkote
,
S.
,
Castle
,
J.
,
Sanders
,
D.
, and
Yoda
,
M.
,
2016
, “
Effect of Jet Velocity in co-Flow Water Cavitation jet Peening
,”
Wear
,
360
, pp.
38
50
. 10.1016/j.wear.2016.03.027
25.
Benedetti
,
M.
,
Fontanari
,
V.
,
Scardi
,
P.
,
Ricardo
,
C.
, and
Bandini
,
M.
,
2009
, “
Reverse Bending Fatigue of Shot Peened 7075-T651 Aluminium Alloy: The Role of Residual Stress Relaxation
,”
Int. J. Fatigue
,
31
(
8–9
), pp.
1225
1236
. 10.1016/j.ijfatigue.2008.11.017
26.
Soyama
,
H.
,
2014
, “
Enhancing the Aggressive Intensity of a Cavitating jet by Introducing a Cavitator and a Guide Pipe
,”
J. Fluid Sci. Technol.
,
9
(
1
), pp.
101301-1
101301-11
. 10.1299/jfst.2014jfst0001
27.
Soyama
,
H.
,
2011
, “
Enhancing the Aggressive Intensity of a Cavitating jet by Means of the Nozzle Outlet Geometry
,”
J. Fluids Eng.
,
133
(
10
), p.
101301
. 10.1115/1.4004905
28.
White
,
F.
,
1999
,
Fluid Mechanics
,
WCB/McGraw-Hill
,
Columbus, OH
.
29.
Marcon
,
A.
,
Melkote
,
S.
, and
Yoda
,
M.
,
2018
, “
Effect of Nozzle Size Scaling in co-Flow Water Cavitation jet Peening
,”
J. Manuf. Process.
,
31
, pp.
372
381
. 10.1016/j.jmapro.2017.12.002
30.
Johnson
Jr,
V.
,
Chahine
,
G.
,
Lindenmuth
,
W.
,
Conn
,
A.
,
Frederick
,
G.
, and
Giacchino
Jr,
G.
,
1984
, “
Cavitating and Structured Jets for Mechanical Bits to Increase Drilling Rate—Part I: Theory and Concepts
,”
ASME J. Energy Resour. Technol.
,
106
(
2
), pp.
282
288
. 10.1115/1.3231053
31.
Johnson
Jr,
V.
,
Chahine
,
G.
,
Lindenmuth
,
W.
,
Conn
,
A.
,
Frederick
,
G.
, and
Giacchino
Jr,
G.
,
1984
, “
Cavitating and Structured Jets for Mechanical Bits to Increase Drilling Rate. Part II: Experimental Results
,”
ASME J. Energy Resour. Technol.
,
106
(
2
), pp.
289
294
. 10.1115/1.3231054
32.
Crow
,
S.
, and
Champagne
,
F.
,
1971
, “
Orderly Structure in Jet Turbulence
,”
J. Fluid Mech.
,
48
(
3
), pp.
547
591
. 10.1017/S0022112071001745
33.
Peng
,
G.
,
Okada
,
K.
,
Yang
,
C.
,
Oguma
,
Y.
, and
Shimizu
,
S.
,
2016
, “
Numerical Simulation of Unsteady Cavitation in a High-Speed Water jet
,”
Int. J. Fluid Mach. Syst.
,
9
(
1
), pp.
66
74
. 10.5293/IJFMS.2016.9.1.066
34.
Liu
,
H. X.
,
Shao
,
Q. M.
,
Kang
,
C.
, and
Gong
,
C.
,
2015
, “
Impingement Capability of High-Pressure Submerged Water jet: Numerical Prediction and Experimental Verification
,”
J. Cent. South Univ.
,
22
(
10
), pp.
3712
3721
. 10.1007/s11771-015-2914-y
35.
Fukaya
,
M.
,
2014
, “Prediction of Cavitation Erosion and Residual Stress of Material Using Cavitating Flow Simulation with Bubble Flow Model,”
Advanced Experimental and Numerical Techniques for Cavitation Erosion Prediction
,
K.
Kim
,
G.
Chahine
,
J.
Franc
, and
A.
Karimi
, eds.,
Springer
,
Dordrecht
, pp.
303
327
.
36.
Hsiao
,
C. T.
,
Jayaprakash
,
A.
,
Kapahi
,
A.
,
Choi
,
J. K.
, and
Chahine
,
G. L.
,
2014
, “
Modelling of Material Pitting From Cavitation Bubble Collapse
,”
J. Fluid Mech.
,
755
(
9
), pp.
142
175
. 10.1017/jfm.2014.394
37.
Sonde
,
E.
,
Chaise
,
T.
,
Boisson
,
N.
, and
Nelias
,
D.
,
2018
, “
Modeling of Cavitation Peening: Jet, Bubble Growth and Collapse, Micro-jet and Residual Stresses
,”
J. Mater. Process. Technol.
,
262
, pp.
479
491
. 10.1016/j.jmatprotec.2018.07.023
38.
Summers
,
D.
,
2003
,
Waterjetting Technology
,
CRC Press
,
Boca Raton, FL
.
39.
Marcon
,
A.
,
2017
, “
Water Cavitation Peening for Aerospace Materials
,”
Ph.D. thesis
,
Georgia Institute of Technology
.
40.
Franc
,
J.
, and
Michel
,
J.
,
2006
,
Fundamentals of Cavitation
,
Springer Science & Business Media
,
Dordrecht, Netherlands
41.
Gere
,
J.
, and
Goodno
,
B.
,
2017
, “
Mechanics of Materials
,”
Cengage Learning
, Boston, MA.
42.
Singh
,
S.
,
Choi
,
J.
, and
Chahine
,
G.
,
2013
, “
Characterization of Cavitation Fields From Measured Pressure Signals of Cavitating Jets and Ultrasonic Horns
,”
J. Fluids Eng.
,
135
(
9
), p.
091302
. 10.1115/1.4024263
43.
Li
,
D.
,
Kang
,
Y.
,
Ding
,
X.
,
Wang
,
X.
, and
Fang
,
Z.
,
2016
, “
An Experimental Investigation on the Pressure Characteristics of High Speed Self-Resonating Pulsed Waterjets Influenced by Feeding Pipe Diameter
,”
J. Mech. Sci. Technol.
,
30
(
11
), pp.
4997
5007
. 10.1007/s12206-016-1019-3
44.
SAE “Residual Stress Measurement by X-ray Diffraction.” HS-784 (
2003
).
45.
Prevéy
,
P.
,
1996
, “
Current Applications of X-ray Diffraction Residual Stress Measurement
,”
Developments in Materials Characterization Technologies
, pp.
103
110
.
46.
Marcon
,
A.
,
Melkote
,
S.
,
Yoda
,
M.
, and
Sanders
,
D.
,
2018
, “
Analysis of Co-Flow Water Cavitation Peening of Al7075-T651 Alloy Using High-Speed Imaging and Surface Pitting Tests
,”
Mater. Perform. Charact.
,
7
(
5
), pp.
1018
1040
. 10.1520/MPC20180021
47.
Soyama
,
H.
,
2005
, “
High-speed Observation of a Cavitating jet in air
,”
J. Fluids Eng.
,
127
(
6
), pp.
1095
1101
. 10.1115/1.2060737
48.
Soyama
,
H.
,
Park
,
J.
, and
Saka
,
M.
,
2000
, “
Use of Cavitating jet for Introducing Compressive Residual Stress
,”
ASME J. Manuf. Sci. Eng.
,
122
(
1
), pp.
83
89
. 10.1115/1.538911
49.
Vázquez
,
J.
,
Navarro
,
C.
, and
Domínguez
,
J.
,
2012
, “
Experimental Results in Fretting Fatigue with Shot and Laser Peened Al 7075-T651 Specimens
,”
Int. J. Fatigue
,
40
, pp.
143
153
. 10.1016/j.ijfatigue.2011.12.014
You do not currently have access to this content.