Abstract

Metal foam is light in weight and exhibits an excellent impact-absorbing capability. Laser forming has emerged as a promising process in shaping metal foam plates into desired geometry. While the feasibility and shaping mechanism has been studied, the effect of the laser forming process on the mechanical properties and the energy-absorbing behavior in particular of the formed foam parts has not been well understood. This study comparatively investigated such effect on as-received and laser-formed closed-cell aluminum alloy foam. In quasi-static compression tests, attention paid to the changes in the elastic region. Imperfections near the laser-irradiated surface were closely examined and used to help elucidate the similarities and differences in as-received and laser-formed specimens. Similarly, from the impact tests, differences in deformation and specific energy absorption were focused on, while relative density distribution and evolution of foam specimens were numerically investigated.

References

1.
Ashby
,
M. F.
,
Evans
,
A. G.
,
Fleck
,
N. A.
,
Gibson
,
L. J.
,
Hutchinson
,
J. W.
, and
Wadley
,
H. N. G.
,
2000
,
Metal Foams: A Design Guide
,
Elsevier
,
New York
.
2.
Kennedy
,
A.
,
2012
,
Powder Metallurgy, Porous Metals and Metal Foams Made From Powders
,
InTech
,
Rijeka, Croatia
, Chap. 2.
3.
Claar
,
T. D.
,
Yu
,
C. J.
,
Hall
,
I.
,
Banhart
,
J.
,
Baumeister
,
J.
, and
Seeliger
,
W.
,
2000
, “
Ultra-lightweight Aluminum Foam Materials for Automotive Applications
,”
SAE Paper No. 2000-01-0335
.
4.
Qiao
,
H.
,
Murthy
,
T. G.
, and
Saldana
,
C.
,
2019
, “
Structure and Deformation of Gradient Metal Foams Produced by Machining
,”
ASME J. Manuf. Sci. Eng.
,
141
(
7
), p.
071009
.
5.
Martin Matz
,
A.
,
Kammerer
,
D.
,
Jost
,
N.
, and
Oßwald
,
K.
,
2016
, “
Machining of Metal Foams With Varying Mesostructure Using Wire EDM
,”
Procedia CIRP
,
42
, pp.
263
267
.
6.
D’Urso
,
G.
, and
Maccarini
,
G.
,
2011
, “
The Formability of Aluminum Foam Sandwich Panels
,”
Int. J. Mater. Form.
,
5
(
3
), pp.
243
257
.
7.
Mansoor
,
B.
,
Nassar
,
H.
,
Shunmugasamy
,
V. C.
, and
Khraisheh
,
M. K.
,
2015
, “
Three Dimensional Forming of Compressed Open-Cell Metallic Foams at Elevated Temperatures
,”
Mater. Sci. Eng. A
,
628
, pp.
433
441
.
8.
Bucher
,
T.
,
Young
,
A.
,
Zhang
,
M.
,
Chen
,
C. J.
, and
Yao
,
Y. L.
,
2018
, “
Thermally Induced Mechanical Response of Metal Foam During Laser Forming
,”
ASME J. Manuf. Sci. Eng.
,
140
(
4
), p.
041004
.
9.
Quadrini
,
F.
,
Guglielmotti
,
A.
,
Squeo
,
E. A.
, and
Tagliaferri
,
V.
,
2010
, “
Laser Forming of Open-Cell Aluminium Foams
,”
J. Mater. Process. Technol.
,
210
(
11
), pp.
1517
1522
.
10.
Guglielmotti
,
A.
,
Quadrini
,
F.
,
Squeo
,
E. A.
, and
Tagliaferri
,
V.
,
2009
, “
Laser Bending of Aluminum Foam Sandwich Panels
,”
Adv. Eng. Mater.
,
11
(
11
), pp.
902
906
.
11.
Santo
,
L.
,
Bellisario
,
D.
,
Rovatti
,
L.
, and
Quadrini
,
F.
,
2012
, “
Microstructural Modification of Laser- Bent Open-Cell Aluminum Foams
,”
Key Eng. Mater.
,
504–506
, pp.
1213
1218
.
12.
Bucher
,
T.
,
Bolger
,
C.
,
Zhang
,
M.
,
Chen
,
C.
, and
Yao
,
Y. L.
,
2016
, “
Effect of Geometrical Modeling on the Prediction of Laser-Induced Heat Transfer in Metal Foam
,”
ASME J. Manuf. Sci. Eng.
,
138
(
12
), p.
121008
.
13.
Jang
,
W.-Y.
, and
Kyriakides
,
S.
,
2009
, “
On the Crushing of Aluminum Open-Cell Foams: Part II Analysis
,”
Int. J. Solids Struct.
,
46
(
3–4
), pp.
635
650
.
14.
Bastawros
,
A.-F.
,
Bart-Smith
,
H.
, and
Evans
,
A. G.
,
2000
, “
Experimental Analysis of Deformation Mechanisms in a Closed-Cell Aluminum Alloy Foam
,”
J. Mech. Phys. Solids
,
48
(
2
), pp.
301
322
.
15.
Barnes
,
A. T.
,
Ravi-Chandar
,
K.
,
Kyriakides
,
S.
, and
Gaitanaros
,
S.
,
2014
, “
Dynamic Crushing of Aluminum Foams: Part I—Experiments
,”
Int. J. Solids Struct.
,
51
(
9
), pp.
1631
1645
.
16.
Deshpande
,
V. S.
, and
Fleck
,
N. A.
,
2000
, “
High Strain Rate Compressive Behaviour of Aluminium Alloy Foams
,”
Int. J. Impact Eng.
,
24
(
3
), pp.
277
298
.
17.
Raj
,
E.
,
Parameswaran
,
V.
, and
Daniel
,
B. S. S.
,
2009
, “
Comparison of Quasi-Static and Dynamic Compression Behavior of Closed-Cell Aluminum Foam
,”
Mater. Sci. Eng. A
,
526
(
1–2
), pp.
11
15
.
18.
Ramachandra
,
S.
,
Sudheer Kumar
,
P.
, and
Ramamurty
,
U.
,
2003
, “
Impact Energy Absorption in an Al Foam at Low Velocities
,”
Scr. Mater.
,
49
(
8
), pp.
741
745
.
19.
Peroni
,
M.
,
Solomos
,
G.
, and
Pizzinato
,
V.
,
2013
, “
Impact Behaviour Testing of Alumnium Foam
,”
Int. J. Impact Eng.
,
53
, pp.
74
83
.
20.
Deshpande
,
V.
, and
Fleck
,
N.
,
2000
, “
Isotropic Constitutive Models for Metallic Foams
,”
J. Mech. Phys. Solids
,
48
(
6–7
), pp.
1253
1283
.
21.
Reid
,
S. R.
, and
Peng
,
C.
,
1997
, “
Dynamic Uniaxial Crushing of Wood
,”
Int. J. Impact Eng.
,
19
(
5–6
), pp.
531
570
.
22.
Geiger
,
M.
, and
Vollertsen
,
F.
,
1993
, “
The Mechanisms of Laser Forming
,”
CIRP Ann.
,
42
(
1
), pp.
301
304
.
You do not currently have access to this content.