Abstract

The structural dynamics of a machine tool at the tool center point characterizes its vibration response and machining stability which affects productivity. The dynamics are mostly dominated by the spindle-holder-tool assembly whose main vibration mode can change during machining due to centrifugal forces, thermal expansion, and gyroscopic moments generated at high spindle speeds. This paper proposes the identification of the spindle’s in-process modal parameters: natural frequency, damping ratio, and modal constant, by using a limited number of vibration transmissibility and critical chatter stability measurements. The classical inverse stability solution, which tunes the modal parameters to minimize prediction errors in chatter stability limits, is augmented with vibration transmissibility under two methods: (1) transmissibility-enhanced inverse stability solution: the modal parameters are updated to minimize prediction errors in chatter stability, and vibration transmissibility; (2) artificial neural network (ANN)-integrated inverse stability solution: the ANN uses vibration transmissibility to estimate the natural frequency and damping ratio, such that the inverse stability solution only needs to identify the modal constant. While both methods are experimentally validated, it is shown that the transmissibility-enhanced inverse stability solution is a more effective approach than the time-consuming ANN alternative for the estimation of in-process spindle dynamics.

References

1.
Altintas
,
Y.
,
2011
,
Manufacturing Automation
,
Cambridge University Press
,
Cambridge
.
2.
Zaghbani
,
I.
, and
Songmene
,
V.
,
2009
, “
Estimation of Machine-Tool Dynamic Parameters During Machining Operation Through Operational Modal Analysis
,”
Int. J. Mach. Tools Manuf.
,
49
(
12–13
), pp.
947
957
.
3.
Cao
,
H.
,
Li
,
B.
, and
He
,
Z.
,
2012
, “
Chatter Stability of Milling with Speed-Varying Dynamics of Spindles
,”
Int. J. Mach. Tools Manuf.
,
52
(
1
), pp.
50
58
.
4.
Ozturk
,
E.
,
Kumar
,
U.
,
Turner
,
S.
, and
Schmitz
,
T.
,
2012
, “
Investigation of Spindle Bearing Preload on Dynamics and Stability Limit in Milling
,”
CIRP Ann.
,
61
(
1
), pp.
343
346
.
5.
Law
,
M.
,
Phani
,
A. S.
, and
Altintas
,
Y.
,
2013
, “
Position-Dependent Multibody Dynamic Modeling of Machine Tools Based on Improved Reduced Order Models
,”
ASME J. Manuf. Sci. Eng.
,
135
(
2
), p.
021008
.
6.
Brecher
,
C.
,
Fey
,
M.
,
Tenbrock
,
C.
, and
Daniels
,
M.
,
2016
, “
Multipoint Constraints for Modeling of Machine Tool Dynamics
,”
ASME J. Manuf. Sci. Eng.
,
138
(
5
), p.
051006
.
7.
Cheng
,
C. H.
,
Schmitz
,
T. L.
, and
Duncan
,
G. S.
,
2007
, “
Rotating Tool Point Frequency Response Prediction Using RCSA
,”
Mach. Sci. Technol.
,
11
(
3
), pp.
433
446
.
8.
Postel
,
M.
,
Bugdayci
,
N. B.
,
Monnin
,
J.
,
Kuster
,
F.
, and
Wegener
,
K.
,
2018
, “
Improved Stability Predictions in Milling Through More Realistic Load Conditions
,”
Procedia CIRP
,
77
(
1
), pp.
102
105
.
9.
Suzuki
,
N.
,
Kurata
,
Y.
,
Kato
,
T.
,
Hino
,
R.
, and
Shamoto
,
E.
,
2012
, “
Identification of Transfer Function by Inverse Analysis of Self-Excited Chatter Vibration in Milling Operations
,”
Precis. Eng.
,
36
(
4
), pp.
568
575
.
10.
Grossi
,
N.
,
Sallese
,
L.
,
Scippa
,
A.
, and
Campatelli
,
G.
,
2017
, “
Improved Experimental-Analytical Approach to Compute Speed-Varying Tool-Tip FRF
,”
Precis. Eng.
,
48
, pp.
114
122
.
11.
Li
,
B.
,
Cai
,
H.
,
Mao
,
X.
,
Huang
,
J.
, and
Luo
,
B.
,
2013
, “
Estimation of CNC Machine–Tool Dynamic Parameters Based on Random Cutting Excitation Through Operational Modal Analysis
,”
Int. J. Mach. Tools Manuf.
,
71
, pp.
26
40
.
12.
Cai
,
H.
,
Luo
,
B.
,
Mao
,
X.
,
Gui
,
L.
,
Song
,
B.
,
Li
,
B.
, and
Peng
,
F.
,
2015
, “
A Method for Identification of Machine-Tool Dynamics Under Machining
,”
Procedia CIRP
,
31
, pp.
502
507
.
13.
Özşahin
,
O.
,
Budak
,
E.
, and
Özgüven
,
H. N.
,
2015
, “
In-Process Tool Point FRF Identification Under Operational Conditions Using Inverse Stability Solution
,”
Int. J. Mach. Tools Manuf.
,
89
, pp.
64
73
.
14.
Zhao
,
R.
,
Yan
,
R.
,
Chen
,
Z.
,
Mao
,
K.
,
Wang
,
P.
, and
Gao
,
R. X.
,
2019
, “
Deep Learning and Its Applications to Machine Health Monitoring
,”
Mech. Syst. Signal Process.
,
115
, pp.
213
237
.
15.
Postel
,
M.
,
Bugdayci
,
B.
,
Kuster
,
F.
, and
Wegener
,
K.
,
2020
, “
Neural Network Supported Inverse Parameter Identification for Stability Predictions in Milling
,”
CIRP J. Manuf. Sci. Technol.
,
29
(
2019
), pp.
71
87
.
16.
Chen
,
G.
,
Li
,
Y.
, and
Liu
,
X.
,
2019
, “
Pose-Dependent Tool Tip Dynamics Prediction Using Transfer Learning
,”
Int. J. Mach. Tools Manuf.
,
137
(
Oct. 2018
), pp.
30
41
.
17.
Devriendt
,
C.
, and
Guillaume
,
P.
,
2008
, “
Identification of Modal Parameters From Transmissibility Measurements
,”
J. Sound Vib.
,
314
(
1–2
), pp.
343
356
.
18.
Liu
,
Y.
, and
Altintas
,
Y.
,
2021
, “
In-Process Identification of Machine Tool Dynamics
,”
CIRP J. Manuf. Sci. Technol.
,
32
, pp.
322
337
.
19.
Özşahin
,
O.
,
Ritou
,
M.
,
Budak
,
E.
,
Rabréau
,
C.
, and
Le Loch
,
S.
,
2019
, “
Identification of Spindle Dynamics by Receptance Coupling for Non-Contact Excitation System
,”
Procedia CIRP
,
82
, pp.
273
278
.
20.
Goodfellow
,
I.
,
Bengio
,
Y.
,
Courville
,
A.
, and
Bengio
,
Y.
,
2016
,
Deep Learning
,
MIT Press
,
Cambridge
.
21.
MATLAB, The Mathworks Inc.
,
2021
, https://www.mathworks.com/.
You do not currently have access to this content.