Abstract

Coaxial one-side resistance spot welding (COS-RSW) is a newly developed process for joining metals and composites. In the present study, Al5052 and carbon-fiber-reinforced plastic (CFRP) lap joints were fabricated via COS-RSW. The welding process was modeled numerically using an in-house finite element code called JWRIAN. Single-lap shear tests were performed to evaluate the joining strength. The molten zone diameter was defined and measured experimentally to verify the numerical model. An artificial neural network (ANN) was established based on multitask learning, and its training data set was prepared via finite element analysis (FEA). The well-trained ANN was employed to generate a process window for the COS-RSW. Results demonstrated that the FEA could accurately reproduce the COS-RSW process, which served as an efficient tool for generating a process data set without performing experiments. The ANN performed multitask learning well and predicted the welding output effectively. Furthermore, Tmavg, an index representing the average value of the maximum temperature in the molten interface of CFRP, was adopted to evaluate the contribution of the integral interface temperature field to the bonding strength qualitatively. An optimal Tmavg value, which was close to the CFRP decomposition temperature of 340 °C, was obtained, and it exhibited an excellent correlation with higher bonding strengths. The process window provided welding parameters directly to yield the desired results.

References

1.
Nasonov
,
F. A.
,
Zinin
,
A. V.
,
Morozov
,
B. B.
, and
Bukharov
,
S. V.
,
2020
, “
The Increasing of Effectiveness of the Reinforce Holes Method for Fasteners With Composite Liners
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
709
(
4
), p.
044111
.
2.
Mu
,
W.
,
Qin
,
G.
,
Na
,
J.
,
Tan
,
W.
,
Liu
,
H.
, and
Luan
,
J.
,
2019
, “
Effect of Alternating Load on the Residual Strength of Environmentally Aged Adhesively Bonded CFRP-Aluminum Alloy Joints
,”
Composites, Part B
,
168
, pp.
87
97
.
3.
Kam
,
D.-H.
,
Jeon
,
N.-K.
,
Jeong
,
T.-E.
, and
Kim
,
J.
,
2019
, “
Pre-Inscribed Laser Surface Pattering for Increased Joining Strength in Laser Fusion Bonding of CFRP and Zinc-Coated Steel
,”
Appl. Sci.
,
9
(
21
), p.
4640
.
4.
Huang
,
Y.
,
Meng
,
X.
,
Wang
,
Y.
,
Xie
,
Y.
, and
Zhou
,
L.
,
2018
, “
Joining of Aluminum Alloy and Polymer via Friction Stir Lap Welding
,”
J. Mater. Process. Technol.
,
257
, pp.
148
154
.
5.
Ogawa
,
Y.
,
Akebono
,
H.
,
Tanaka
,
K.
, and
Sugeta
,
A.
,
2019
, “
Effect of Welding Time on Fatigue Properties of Friction Stir Spot Welds of Al to Carbon Fibre-Reinforced Plastic
,”
Sci. Technol. Weld. Joining
,
24
(
3
), pp.
235
242
.
6.
Staab
,
F.
, and
Balle
,
F.
,
2019
, “
Ultrasonic Torsion Welding of Ageing-Resistant Al/CFRP Joints: Properties, Microstructure and Joint Formation
,”
Ultrasonics
,
93
, pp.
139
144
.
7.
Pereira
,
D.
,
Oliveira
,
J. P.
,
Santos
,
T. G.
,
Miranda
,
R. M.
,
Lourenço
,
F.
,
Gumpinger
,
J.
, and
Bellarosa
,
R.
,
2019
, “
Aluminium to Carbon Fibre Reinforced Polymer Tubes Joints Produced by Magnetic Pulse Welding
,”
Compos. Struct.
,
230
, p.
111512
.
8.
Nagatsuka
,
K.
,
Xiao
,
B.
,
Wu
,
L.
,
Natata
,
K.
,
Saeki
,
S.
,
Kitamoto
,
Y.
, and
Iwamoto
,
Y.
,
2018
, “
Dissimilar Materials Joining of Metal/Carbon Fibre Reinforced Plastic by Resistance Spot Welding
,”
Weld. Int.
,
32
(
7
), pp.
505
512
.
9.
Szallies
,
K.
,
Bielenin
,
M.
,
Schricker
,
K.
,
Bergmann
,
J. P.
, and
Neudel
,
C.
,
2019
, “
Single-Side Resistance Spot Joining of Polymer-Metal Hybrid Structures
,”
Weld. World
,
63
(
4
), pp.
1145
1152
.
10.
Szallies
,
K.
,
Friedmann
,
M.
,
Bielenin
,
M.
, and
Bergmann
,
J. P.
,
2019
, “
One-Sided Resistance Spot Welding of Plastic-Metal Hybrid Joints—Characterization of the Joining Zone
,”
Key Eng. Mater.
,
809
, pp.
183
189
.
11.
Ren
,
S.
,
Ma
,
Y.
,
Saeki
,
S.
,
Iwamoto
,
Y.
, and
Ma
,
N.
,
2019
, “
Numerical Analysis on Coaxial One-Side Resistance Spot Welding of Al5052 and CFRP Dissimilar Materials
,”
Mater. Des.
,
188
, p.
108442
.
12.
Ma
,
N. S.
, and
Murakawa
,
H.
,
2010
, “
Numerical and Experimental Study on Nugget Formation in Resistance Spot Welding for Three Pieces of High Strength Steel Sheets
,”
J. Mater. Process. Technol.
,
210
(
14
), pp.
2045
2052
.
13.
Wan
,
Z.
,
Wang
,
H.
,
Wang
,
M.
,
Carlson
,
B. E.
, and
Sigler
,
D. R.
,
2016
, “
Numerical Simulation of Resistance Spot Welding of Al to Zinc-Coated Steel With Improved Representation of Contact Interactions
,”
Int. J. Heat Mass Transfer
,
101
, pp.
749
763
.
14.
Deng
,
L.
,
Li
,
Y.
,
Cai
,
W.
,
Haselhuhn
,
A. S.
, and
Carlson
,
B. E.
,
2020
, “
Simulating Thermoelectric Effect and Its Impact on Asymmetric Weld Nugget Growth in Aluminum Resistance Spot Welding
,”
ASME J. Manuf. Sci. Eng.
,
142
(
9
), p.
091001
.
15.
Jedrasiak
,
P.
, and
Shercliff
,
H. R.
,
2019
, “
Modelling of Heat Generation in Linear Friction Welding Using a Small Strain Finite Element Method
,”
Mater. Des.
,
177
, p.
107833
.
16.
Arinez
,
J. F.
,
Chang
,
Q.
,
Gao
,
R. X.
,
Xu
,
C.
, and
Zhang
,
J.
,
2020
, “
Artificial Intelligence in Advanced Manufacturing: Current Status and Future Outlook
,”
ASME J. Manuf. Sci. Eng.
,
142
(
11
), p.
110804
.
17.
Sözen
,
E.
,
Bardak
,
T.
,
Aydemİr
,
D.
, and
Bardak
,
S.
,
2018
, “
Estimation of Deformation in Nanocomposites Using Artificial Neural Networks and Deep Learning Algorithms
,”
Bartın Orman Fakültesi Dergisi
,
20
(
2
), pp.
223
231
.
18.
Chang
,
Y.
,
Yue
,
J.
,
Guo
,
R.
,
Liu
,
W.
, and
Li
,
L.
,
2020
, “
Penetration Quality Prediction of Asymmetrical Fillet Root Welding Based on Optimized BP Neural Network
,”
J. Manuf. Processes
,
50
, pp.
247
254
.
19.
Tian
,
L.
, and
Luo
,
Y.
,
2020
, “
A Study on the Prediction of Inherent Deformation in Fillet-Welded Joint Using Support Vector Machine and Genetic Optimization Algorithm
,”
J. Intell. Manuf.
,
31
(
3
), pp.
575
596
.
20.
Özel
,
T.
,
Altay
,
A.
,
Kaftanoğlu
,
B.
,
Leach
,
R.
,
Senin
,
N.
, and
Donmez
,
A.
,
2019
, “
Focus Variation Measurement and Prediction of Surface Texture Parameters Using Machine Learning in Laser Powder Bed Fusion
,”
ASME J. Manuf. Sci. Eng.
,
142
(
1
), p.
011008
.
21.
Wan
,
X.
,
Wang
,
Y.
,
Zhao
,
D.
, and
Huang
,
Y.
,
2017
, “
A Comparison of Two Types of Neural Network for Weld Quality Prediction in Small Scale Resistance Spot Welding
,”
Mech. Syst. Signal Process
,
93
, pp.
634
644
.
22.
Kimiaki
,
N.
,
Hironobu
,
T.
,
Bolyu
,
X.
,
Atsuki
,
T.
, and
Kazuhiro
,
N.
,
2018
, “
Effect of Silane Coupling on the Joint Characteristics of Friction Lap Joined Al Alloy/CFRP
,”
Weld. Int.
,
32
(
5
), pp.
328
337
.
23.
Fox
,
D.
,
Gilman
,
J. W.
,
De Long
,
H.
, and
Trulove
,
P. C.
,
2005
, “
TGA Decomposition Kinetics of 1-Butyl-2, 3-Dimethylimidazolium Tetrafluoroborate and the Thermal Effects of Contaminants
,”
J. Chem. Thermodyn.
,
37
(
9
), pp.
900
905
.
24.
Oussaid
,
K.
,
El Ouafi
,
A.
, and
Chebak
,
A.
,
2019
, “
Experimental Investigation of Laser Welding Process in Overlap Joint Configuration
,”
J. Mater. Sci. Chem. Eng.
,
7
(
3
), pp.
16
31
.
25.
Rajendran
,
C.
,
Srinivasan
,
K.
,
Balasubramanian
,
V.
,
Balaji
,
H.
, and
Selvaraj
,
P.
,
2019
, “
Data Set on Prediction of Friction Stir Welding Parameters to Achieve Maximum Strength of AA2014-T6 Aluminium Alloy Joints
,”
Data Brief
,
23
, p.
103735
.
26.
Erdemir
,
F.
,
2017
, “
Study on Particle Size and X-ray Peak Area Ratios in High Energy Ball Milling and Optimization of the Milling Parameters Using Response Surface Method
,”
Measurement
,
112
, pp.
53
60
.
27.
Standley
,
T.
,
Zamir
,
A. R.
,
Chen
,
D.
,
Guibas
,
L.
,
Malik
,
J.
, and
Savarese
,
S.
,
2019
, “
Which Tasks Should Be Learned Together in Multi-task Learning?
,” arXiv preprint arXiv:1905.07553.
28.
Ruder
,
S.
,
2017
, “
An Overview of Multi-task Learning in Deep Neural Networks
,” arXiv preprint
arXiv:1706.05098
.1706.05098
29.
Baxter
,
J.
,
1997
, “
A Bayesian/Information Theoretic Model of Learning to Learn via Multiple Task Sampling
,”
Mach. Learn.
,
28
(
1
), pp.
7
39
.
30.
Lapedes
,
A.
, and
Farber
,
R.
,
1987
, “
Non-Linear Signal Processing Using Neural Networks: Prediction and System Modelling
,”
IEEE International Conference on Neural Networks
,
San Diego, CA
.
You do not currently have access to this content.