Abstract

Today, freeform surfaces are widely used on products in automobile, aerospace, and die/molds industries, which are generally manufactured using multi-axis computer numerical control (CNC) machines. Frequent changes in the design of products necessitate creating CNC part programs that need fast and accurate toolpath generation methods. Traditional toolpath generation methods involve complex computations and are unable to consider multiple surface patches together. The voxel-based computer-aided design (CAD) model provides the ability to represent the multi-patch surfaces in a discretized manner, which can be processed using an advanced parallel computing framework for accurate tool path planning. This paper presents a new method to generate an adaptive iso-planar toolpath for a three-axis CNC machining of freeform surfaces that are projectable onto a plane without overlap using the voxel-based part model. The algorithm is designed to work on a graphics processing unit (GPU) that allows parallel processing for faster toolpath generation. The proposed approach consists of two main steps, an algorithm to generate gouge-free cutter location points from the voxel-based CAD model and an algorithm to find out the sidestep and forward step from the cutter location points to create the final CNC tool path. A new image-processing technique has been proposed to identify gouge by detecting the shadow surface voxels and their intersection with the cutting tool. The developed system was extensively tested and compared with various reported toolpath planning strategies for machining complex freeform surface parts. The results show that the developed method is computationally efficient, robust, and accurate in generating adaptive planar toolpath.

References

1.
Elber
,
G.
, and
Cohen
,
E.
,
1994
, “
Toolpath Generation for Freeform Surface Models
,”
Comput. Aided Des.
,
26
(
6
), pp.
490
496
.
2.
Ding
,
S.
,
Mannan
,
M. A.
,
Poo
,
A. N.
,
Yang
,
D. C. H.
, and
Han
,
Z.
,
2003
, “
Adaptive Iso-planar Tool Path Generation for Machining of Free-Form Surfaces
,”
CAD Comput. Aided Des.
,
35
(
2
), pp.
141
153
.
3.
Feng
,
H. Y.
, and
Li
,
H.
,
2002
, “
Constant Scallop-Height Tool Path Generation for Three-Axis Sculptured Surface Machining
,”
Comput. Aided Des.
,
34
(
9
), pp.
647
654
.
4.
Hu
,
P.
,
Chen
,
L.
, and
Tang
,
K.
,
2017
, “
Efficiency-Optimal Iso-planar Tool Path Generation for Five-Axis Finishing Machining of Freeform Surfaces
,”
Comput. Aided Des.
,
83
, pp.
33
50
.
5.
Collins
,
J. S.
,
Tucker
,
T.
, and
Kurfess
,
T.
,
2019
, “
Intensity-Based Registration With Voxel-Based Computer-Aided Manufacturing for Adaptive Machining
,”
ASME J. Manuf. Sci. Eng.
,
141
(
11
), p.
111005
.
6.
Tarbutton
,
J.
,
Kurfess
,
T. R.
,
Tucker
,
T.
, and
Konobrytskyi
,
D.
,
2013
, “
Gouge-Free Voxel-Based Machining for Parallel Processors
,”
Int. J. Adv. Manuf. Technol.
,
69
(
9–12
), pp.
1941
1953
.
7.
Tarbutton
,
J. A.
,
Kurfess
,
T. R.
, and
Tucker
,
T. M.
,
2010
, “
Graphics Based Path Planning for Multi-Axis Machine Tools
,”
Comput. Aided. Des. Appl.
,
7
(
6
), pp.
835
845
.
8.
Balabokhin
,
A.
, and
Tarbutton
,
J.
,
2017
, “
Iso-Scallop Tool Path Building Algorithm ‘Based on Tool Performance Metric’ for Generalized Cutter and Arbitrary Milling Zones in 3-Axis CNC Milling of Free-Form Triangular Meshed Surfaces
,”
J. Manuf. Process.
,
28
(
3
), pp.
565
572
.
9.
Kukreja
,
A.
,
Dhanda
,
M.
, and
Pande
,
S.
,
2020
, “
Efficient Toolpath Planning for Voxel-Based CNC Rough Machining
,”
Comput. Aided Des. Appl.
,
18
(
2
), pp.
285
296
.
10.
Balabokhin
,
A.
, and
Tarbutton
,
J.
,
2017
, “
Automatic Generalized Cutter Selection for Finishing of Free-Form Surfaces in 3-Axis CNC Milling by ‘Surface Tolerance and Tool Performance Metrics
,”
Int. J. Adv. Manuf. Technol.
,
93
(
1–4
), pp.
423
432
.
11.
Konobrytskyi
,
D.
,
Hossain
,
M. M.
,
Tucker
,
T. M.
,
Tarbutton
,
J. A.
, and
Kurfess
,
T. R.
,
2018
, “
5-Axis Tool Path Planning Based on Highly Parallel Discrete Volumetric Geometry Representation: Part I Contact Point Generation
,”
Comput. Aided Des. Appl.
,
15
(
1
), pp.
76
89
.
12.
Lynn
,
R.
,
Contis
,
D.
,
Hossain
,
M.
,
Huang
,
N.
,
Tucker
,
T.
, and
Kurfess
,
T.
,
2017
, “
Voxel Model Surface Offsetting for Computer-Aided Manufacturing Using Virtualized High-Performance Computing
,”
J. Manuf. Syst.
,
43
(
2
), pp.
296
304
.
13.
Joy
,
J.
, and
Feng
,
H. Y.
,
2020
, “
Fast Update of Sliced Voxel Workpiece Models Using Partitioned Swept Volumes of Three-Axis Linear Tool Paths
,”
Eng. Comput.
,
36
(
3
), pp.
981
992
.
14.
Lynn
,
R.
,
Dinar
,
M.
,
Huang
,
N.
,
Collins
,
J.
,
Yu
,
J.
,
Greer
,
C.
,
Tucker
,
T.
, and
Kurfess
,
T.
,
2018
, “
Direct Digital Subtractive Manufacturing of a Functional Assembly Using Voxel-Based Models
,”
J. Manuf. Sci. Eng. Trans. ASME
,
140
(
2
), p.
021006
.
15.
Li
,
Y.
,
Tang
,
K.
, and
Zeng
,
L.
,
2020
, “
A Voxel Model-Based Process-Planning Method for Five-Axis Machining of Complicated Parts
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
4
), pp.
1
14
.
16.
Lin
,
T.
,
Lee
,
J. W.
, and
Bohez
,
E. L. J.
,
2009
, “
A New Accurate Curvature Matching and Optimal Tool Based Five-Axis Machining Algorithm
,”
J. Mech. Sci. Technol.
,
23
(
10
), pp.
2624
2634
.
17.
Wang
,
Y. J.
,
Dong
,
Z.
, and
Vickers
,
G. W.
,
2007
, “
A 3D Curvature Gouge Detection and Elimination Method for 5-Axis CNC Milling of Curved Surfaces
,”
Int. J. Adv. Manuf. Technol.
,
33
(
3–4
), pp.
368
378
.
18.
Jawanda
,
A. S.
,
Batish
,
A.
, and
Bedi
,
S.
,
2018
, “
Adaptive Ball Drop Algorithm for Toolpath Generation of Axisymmetric Triangulated Parts to Eliminate Overcutting
,”
Int. J. Adv. Manuf. Technol.
,
99
(
1–4
), pp.
461
474
.
19.
Dhanda
,
M.
, and
Pande
,
S. S.
,
2019
, “
Adaptive Tool Path Planning Strategy for Freeform Surface Machining Using Point Cloud
,”
Comput. Aided Des. Appl.
,
16
(
2
), pp.
289
307
.
20.
Lee
,
Y. S.
, and
Chang
,
T. C.
,
1996
, “
Automatic Cutter Selection for 5-Axis Sculptured Surface Machining
,”
Int. J. Prod. Res.
,
34
(
4
), pp.
977
998
.
21.
Choi
,
B. K.
,
Kim
,
D. H.
, and
Jerard
,
R. B.
,
1997
, “
C-Space Approach to Tool-Path Generation for Die and Mould Machining
,”
Comput. Aided Des.
,
29
(
9
), pp.
657
669
.
22.
Grandin
,
R. J.
,
Young
,
G.
,
Holland
,
S. D.
, and
Krishnamurthy
,
A.
,
2018
, “
GPU-Accelerated Depth Map Generation for X-Ray Simulations of Complex CAD Geometries
,”
AIP Conference Proceedings
,
Provo, UT
,
July 16–21
, p.
190002
.
23.
Patil
,
S.
, and
Ravi
,
B.
,
2005
, “
Voxel-Based Representation, Display and Thickness Analysis of Intricate Shapes
,”
Proceedings of the Ninth International Conference on Computer Aided Design and Computer Graphics. CAD/CG 2005
,
Hong Kong, China
,
Dec. 7–10
, pp.
415
420
.
25.
Kukreja
,
A.
, and
Pande
,
S. S.
,
2019
, “
Estimation of Scallop Height in Freeform Surface CNC Machining
,”
Int. J. Adv. Manuf. Technol.
,
104
(
9–12
), pp.
4231
4242
.
26.
Williams
,
L. F.
,
1976
, “
A Modification to the Half-Interval
,”
Proceedings of the 14th Annual Southeast Regional Conference
,
New York
,
Apr. 22–24
, pp.
95
101
.
You do not currently have access to this content.