Abstract

Drilling operation with cryogenic assistance is beneficial toward solving critical issues in machining difficult-to-cut materials and structures, especially in terms of improving surface integrity, elongating tool life, sustainability, and so on for providing high-performance components in aerospace industries. This article presents an overview of the state of the art on this technique in recent years. It aims at analyzing its requirements and orient future directions. It starts with a summary concerning its application for different categories of work materials, including metals, composites, and hybrid stacks. Then, the main methodologies of numerical modeling and experimental characterization toward understanding the fundamentals are reviewed. The goal is to present a general view of current approaches, discuss their advantages, and disadvantages to understand the requirements toward future work. In addition, impacts of cryogenic drilling on cutting performance are reviewed in terms of thermomechanical loadings, surface integrity, tool wear, and sustainability. Finally, a brief summary is presented from different perspectives, and an outlook is recommended for future orientations.

References

1.
Schulz
,
H.
, and
Moriwaki
,
T.
,
1992
, “
High-Speed Machining
,”
CIRP Ann.
,
41
(
2
), pp.
637
643
.
2.
Rahman
,
M.
,
Wang
,
Z.-G.
, and
Wong
,
Y.-S.
,
2006
, “
A Review on High-Speed Machining of Titanium Alloys
,”
JSME Int. J. Ser. C
,
49
(
1
), pp.
11
20
.
3.
Pervaiz
,
S.
,
Kannan
,
S.
, and
Kishawy
,
H. A.
,
2018
, “
An Extensive Review of the Water Consumption and Cutting Fluid Based Sustainability Concerns in the Metal Cutting Sector
,”
J. Cleaner Prod.
,
197
, pp.
134
153
.
4.
Ye
,
L.
,
Lu
,
Y.
,
Su
,
Z.
, and
Meng
,
G.
,
2005
, “
Functionalized Composite Structures for New Generation Airframes: A Review
,”
Compos. Sci. Technol.
,
65
(
9
), pp.
1436
1446
.
5.
Mrazova
,
M.
,
2013
, “
Advanced Composite Materials of the Future in Aerospace Industry
,”
Incas Bull.
,
5
(
3
), pp.
139
150
.
6.
M’Saoubi
,
R.
,
Axinte
,
D.
,
Soo
,
S. L.
,
Nobel
,
C.
,
Attia
,
H.
,
Kappmeyer
,
G.
,
Engin
,
S.
, and
Sim
,
W.-M.
,
2015
, “
High Performance Cutting of Advanced Aerospace Alloys and Composite Materials
,”
CIRP Ann.
,
64
(
2
), pp.
557
580
.
7.
Irving
,
P. E.
, and
Soutis
,
C.
,
2019
,
Polymer Composites in the Aerospace Industry
,
Woodhead Publishing
,
UK
.
8.
Boyer
,
R. R.
,
1996
, “
An Overview on the Use of Titanium in the Aerospace Industry
,”
Mater. Sci. Eng. A
,
213
(
1–2
), pp.
103
114
.
9.
Boyer
,
R. R.
, and
Briggs
,
R. D.
,
2005
, “
The Use of β Titanium Alloys in the Aerospace Industry
,”
J. Mater. Eng. Perform.
,
14
(
6
), pp.
681
685
.
10.
Inagaki
,
I.
,
Shirai
,
Y.
,
Takechi
,
T.
, and
Ariyasu
,
N.
,
2014
, “
Application and Features of Titanium for the Aerospace Industry
,”
Nippon Steel & Sumitomo Metal Technical Report
,
106
, pp.
22
27
.
11.
Parkinson
,
R.
,
1997
,
Properties and Applications of Electroless Nickel
, Vol.
37
,
Nickel Development Institute
,
Toronto
, pp.
1
33
.
12.
Smith
,
R. J.
,
Lewi
,
G. J.
, and
Yates
,
D. H.
,
2001
, “
Development and Application of Nickel Alloys in Aerospace Engineering
,”
Aircr. Eng. Aerosp. Technol.
,
73
(
2
), pp.
138
147
.
13.
Thakur
,
A.
, and
Gangopadhyay
,
S.
,
2016
, “
State-of-the-Art in Surface Integrity in Machining of Nickel-Based Super Alloys
,”
Int. J. Mach. Tools Manuf.
,
100
, pp.
25
54
.
14.
Thellaputta
,
G. R.
,
Chandra
,
P. S.
, and
Rao
,
C. S. P.
,
2017
, “
Machinability of Nickel Based Superalloys: A Review
,”
Mater. Today: Proc.
,
4
(
2
), pp.
3712
3721
.
15.
Ogunbiyi
,
O. F.
,
Jamiru
,
T.
,
Sadiku
,
E. R.
,
Adesina
,
O. T.
,
Beneke
,
L.
, and
Adegbola
,
T. A.
,
2019
, “
Spark Plasma Sintering of Nickel and Nickel Based Alloys: A Review
,”
Procedia Manuf.
,
35
, pp.
1324
1329
.
16.
Chetan
,
Ghosh
,
S.
, and
Rao
,
P. V.
,
2015
, “
Application of Sustainable Techniques in Metal Cutting for Enhanced Machinability: A Review
,”
J. Cleaner Prod.
,
100
, pp.
17
34
.
17.
Hallstedt
,
S. I.
,
Bertoni
,
M.
, and
Isaksson
,
O.
,
2015
, “
Assessing Sustainability and Value of Manufacturing Processes: A Case in the Aerospace Industry
,”
J. Cleaner Prod.
,
108
, pp.
169
182
.
18.
Hallstedt
,
S. I.
,
2017
, “
Sustainability Criteria and Sustainability Compliance Index for Decision Support in Product Development
,”
J. Cleaner Prod.
,
140
, pp.
251
266
.
19.
Lu
,
T.
, and
Jawahir
,
I. S.
,
2015
, “
Metrics-Based Sustainability Evaluation of Cryogenic Machining
,”
Procedia CIRP
,
29
, pp.
520
525
.
20.
Jamil
,
M.
,
Khan
,
A. M.
,
He
,
N.
,
Li
,
L.
,
Iqbal
,
A.
, and
Mia
,
M.
,
2019
, “
Evaluation of Machinability and Economic Performance in Cryogenic-Assisted Hard Turning of α-β Titanium: A Step Towards Sustainable Manufacturing
,”
Mach. Sci. Technol.
,
23
(
6
), pp.
1022
1046
.
21.
Chetan
,
Ghosh
,
S.
, and
Rao
,
P. V.
,
2019
, “
Comparison Between Sustainable Cryogenic Techniques and Nano-MQL Cooling Mode in Turning of Nickel-Based Alloy
,”
J. Cleaner Prod.
,
231
, pp.
1036
1049
.
22.
Reitz
,
G.
,
1919
,
Die Grösse Des Geistlichen Und Ritterschaftlichen Grundbesitzes Im Ehemaligen Kur-Trier
,
Doctoral Thesis Rheinische Friedrich-Wilhelms-Universität Bonn
,
Germany
.
23.
Uehara
,
K.
, and
Kumagai
,
S.
,
1968
, “
Chip Formation, Surface Roughness and Cutting Force in Cryogenic Machining
,”
Ann. CIRP
,
17
(
1
), pp.
68
74
.
24.
Hong
,
S. Y.
, and
Zhao
,
Z.
,
1999
, “
Thermal Aspects, Material Considerations and Cooling Strategies in Cryogenic Machining
,”
Clean Technol. Environ. Policy
,
1
(
2
), pp.
107
116
.
25.
Hong
,
S. Y.
, and
Ding
,
Y.
,
2001
, “
Cooling Approaches and Cutting Temperatures in Cryogenic Machining of Ti-6Al-4V
,”
Int. J. Mach. Tools Manuf.
,
41
(
10
), pp.
1417
1437
.
26.
Hong
,
S. Y.
,
Markus
,
I.
, and
Jeong
,
W.
,
2001
, “
New Cooling Approach and Tool Life Improvement in Cryogenic Machining of Titanium Alloy Ti-6Al-4V
,”
Int. J. Mach. Tools Manuf.
,
41
(
15
), pp.
2245
2260
.
27.
Hong
,
S. Y.
,
Ding
,
Y.
, and
Jeong
,
W.
,
2001
, “
Friction and Cutting Forces in Cryogenic Machining of Ti–6Al–4V
,”
Int. J. Mach. Tools Manuf.
,
41
(
15
), pp.
2271
2285
.
28.
Pušavec
,
F.
,
Grguraš
,
D.
,
Koch
,
M.
, and
Krajnik
,
P.
,
2019
, “
Cooling Capability of Liquid Nitrogen and Carbon Dioxide in Cryogenic Milling
,”
CIRP Ann.
,
68
(
1
), pp.
73
76
.
29.
Shah
,
P.
,
Khanna
,
N.
,
Singla
,
A. K.
, and
Bansal
,
A.
,
2021
, “
Tool Wear, Hole Quality, Power Consumption and Chip Morphology Analysis for Drilling Ti-6Al-4V Using LN2 and LCO2
,”
Tribol. Int.
,
163
, p.
107190
.
30.
Venugopal
,
K. A.
,
Paul
,
S.
, and
Chattopadhyay
,
A. B.
,
2007
, “
Tool Wear in Cryogenic Turning of Ti-6Al-4V Alloy
,”
Cryogenics
,
47
(
1
), pp.
12
18
.
31.
Stampfer
,
B.
,
Golda
,
P.
,
Schießl
,
R.
,
Maas
,
U.
, and
Schulze
,
V.
,
2020
, “
Cryogenic Orthogonal Turning of Ti-6Al-4V: Analysis of Nitrogen Supply Pressure Variation and Subcooler Usage
,”
Int. J. Adv. Manuf. Technol.
,
111
(
1–2
), pp.
359
369
.
32.
Chaabani
,
S.
,
Arrazola
,
P. J.
,
Ayed
,
Y.
,
Madariaga
,
A.
,
Tidu
,
A.
, and
Germain
,
G.
,
2020
, “
Comparison Between Cryogenic Coolants Effect on Tool Wear and Surface Integrity in Finishing Turning of Inconel 718
,”
J. Mater. Process. Technol.
,
285
, p.
116780
.
33.
Agrawal
,
C.
,
Wadhwa
,
J.
,
Pitroda
,
A.
,
Pruncu
,
C. I.
,
Sarikaya
,
M.
, and
Khanna
,
N.
,
2021
, “
Comprehensive Analysis of Tool Wear, Tool Life, Surface Roughness, Costing and Carbon Emissions in Turning Ti–6Al–4V Titanium Alloy: Cryogenic Versus Wet Machining
,”
Tribol. Int.
,
153
, p.
106597
.
34.
Shokrani
,
A.
,
Dhokia
,
V.
, and
Newman
,
S. T.
,
2016
, “
Investigation of the Effects of Cryogenic Machining on Surface Integrity in CNC End Milling of Ti–6Al–4V Titanium Alloy
,”
J. Manuf. Process.
,
21
, pp.
172
179
.
35.
Sivalingam
,
V.
,
Sun
,
J.
,
Yang
,
B.
,
Liu
,
K.
, and
Raju
,
R.
,
2018
, “
Machining Performance and Tool Wear Analysis on Cryogenic Treated Insert During End Milling of Ti-6Al-4V Alloy
,”
J. Manuf. Process.
,
36
, pp.
188
196
.
36.
Gong
,
L.
,
Zhao
,
W.
,
Ren
,
F.
,
He
,
N.
,
Li
,
L.
,
Xu
,
Q.
, and
Khan
,
A. M.
,
2019
, “
Experimental Study on Surface Integrity in Cryogenic Milling of 35CrMnSiA High-Strength Steel
,”
Int. J. Adv. Manuf. Technol.
,
103
(
1–4
), pp.
605
615
.
37.
Jamil
,
M.
,
Zhao
,
W.
,
He
,
N.
,
Gupta
,
M. K.
,
Sarikaya
,
M.
,
Khan
,
A. M.
,
Sanjay
,
M. R.
,
Siengchin
,
S.
, and
Pimenov
,
D. Y.
,
2021
, “
Sustainable Milling of Ti–6Al–4V: A Trade-Off Between Energy Efficiency, Carbon Emissions and Machining Characteristics Under MQL and Cryogenic Environment
,”
J. Cleaner Prod.
,
281
, p.
125374
.
38.
Ahmed
,
L. S.
, and
Kumar
,
M. P.
,
2016
, “
Cryogenic Drilling of Ti–6Al–4V Alloy Under Liquid Nitrogen Cooling
,”
Mater. Manuf. Process.
,
31
(
7
), pp.
951
959
.
39.
Basmaci
,
G.
,
Yoruk
,
A.
,
Koklu
,
U.
, and
Morkavuk
,
S.
,
2017
, “
Impact of Cryogenic Condition and Drill Diameter on Drilling Performance of CFRP
,”
Appl. Sci.
,
7
(
7
), p.
667
.
40.
Ahmed
,
L. S.
, and
Pradeep Kumar
,
M.
,
2017
, “
Investigation of Cryogenic Cooling Effect in Reaming Ti-6AL-4V Alloy
,”
Mater. Manuf. Process.
,
32
(
9
), pp.
970
978
.
41.
Bertolini
,
R.
,
Savio
,
E.
,
Ghiotti
,
A.
, and
Bruschi
,
S.
,
2021
, “
The Effect of Cryogenic Cooling and Drill Bit on the Hole Quality When Drilling Magnesium-Based Fiber Metal Laminates
,”
Procedia Manuf.
,
53
, pp.
118
127
.
42.
Wohlfeil
,
F.
,
2015
,
Radical Technological Innovation: Case Study of Cryogenic Machining by 5ME
,
KIT
,
Germany
.
43.
Bhattacharyya
,
D.
, and
Horrigan
,
D. P. W.
,
1998
, “
A Study of Hole Drilling in Kevlar Composites
,”
Compos. Sci. Technol.
,
58
(
2
), pp.
267
283
.
44.
Venkatesh
,
V. C.
,
Izman
,
S.
,
Yap
,
T. C.
,
Brevern
,
P. V.
, and
El-Tayeb
,
N. S. M.
,
2010
, “
Precision Cryogenic Drilling, Turning and Grinding of Ti-64 Alloys
,”
Int. J. Precis. Technol.
,
1
(
3–4
), pp.
287
301
.
45.
Biermann
,
D.
, and
Hartmann
,
H.
,
2012
, “
Reduction of Burr Formation in Drilling Using Cryogenic Process Cooling
,”
Procedia CIRP
,
3
, pp.
85
90
.
46.
Hartung
,
P. D.
,
Kramer
,
B. M.
, and
von Turkovich
,
B. F.
,
1982
, “
Tool Wear in Titanium Machining
,”
CIRP Ann.
,
31
(
1
), pp.
75
80
.
47.
Zareena
,
A. R.
, and
Veldhuis
,
S. C.
,
2012
, “
Tool Wear Mechanisms and Tool Life Enhancement in Ultra-Precision Machining of Titanium
,”
J. Mater. Process. Technol.
,
212
(
3
), pp.
560
570
.
48.
Ayed
,
Y.
,
Germain
,
G.
,
Melsio
,
A. P.
,
Kowalewski
,
P.
, and
Locufier
,
D.
,
2017
, “
Impact of Supply Conditions of Liquid Nitrogen on Tool Wear and Surface Integrity When Machining the Ti-6Al-4V Titanium Alloy
,”
Int. J. Adv. Manuf. Technol.
,
93
(
1–4
), pp.
1199
1206
.
49.
Bushlya
,
V.
,
Lenrick
,
F.
,
Ståhl
,
J.-E.
, and
M’Saoubi
,
R.
,
2018
, “
Influence of Oxygen on the Tool Wear in Machining
,”
CIRP Ann.
,
67
(
1
), pp.
79
82
.
50.
Toubhans
,
B.
,
Fromentin
,
G.
,
Viprey
,
F.
,
Karaouni
,
H.
, and
Dorlin
,
T.
,
2020
, “
Machinability of Inconel 718 During Turning: Cutting Force Model Considering Tool Wear, Influence on Surface Integrity
,”
J. Mater. Process. Technol.
,
285
, p.
116809
.
51.
Liu
,
H.
,
Ayed
,
Y.
,
Birembaux
,
H.
,
Rossi
,
F.
, and
Poulachon
,
G.
,
2022
, “
Impacts of Flank Wear and Cooling Strategies on Evolutions of Built-Up Edges, Diffusion Wear and Cutting Forces in Ti6Al4V Machining
,”
Tribol. Int.
,
171
, p.
107537
.
52.
Shokrani
,
A.
,
Huibin
,
S.
,
Dhokia
,
V.
, and
Newman
,
S. T.
,
2016
, “
High Speed Cryogenic Drilling of Grade 5 ELI Titanium Alloy
,”
26th International Conference on Flexible Automation and Intelligent Manufacturing
,
Seoul, South Korea
,
June 27–30
, pp.
6
30
.
53.
Karpat
,
Y.
,
2011
, “
Temperature Dependent Flow Softening of Titanium Alloy Ti6Al4: An Investigation Using Finite Element Simulation of Machining
,”
J. Mater. Process. Technol.
,
211
(
4
), pp.
737
749
.
54.
Heigel
,
J. C.
,
Whitenton
,
E.
,
Lane
,
B.
,
Donmez
,
M. A.
,
Madhavan
,
V.
, and
Moscoso-Kingsley
,
W.
,
2017
, “
Infrared Measurement of the Temperature at the Tool–Chip Interface While Machining Ti–6Al–4V
,”
J. Mater. Process. Technol.
,
243
, pp.
123
130
.
55.
Cotterell
,
M.
, and
Byrne
,
G.
,
2008
, “
Characterisation of Chip Formation During Orthogonal Cutting of Titanium Alloy Ti–6Al–4V
,”
CIRP J. Manuf. Sci. Technol.
,
1
(
2
), pp.
81
85
.
56.
Garcia-Gonzalez
,
J. C.
,
Moscoso-Kingsley
,
W.
, and
Madhavan
,
V.
,
2016
, “
Tool Rake Face Temperature Distribution When Machining Ti6Al4V and Inconel 718
,”
Procedia Manuf.
,
5
, pp.
1369
1381
.
57.
Molinari
,
A.
,
Musquar
,
C.
, and
Sutter
,
G.
,
2002
, “
Adiabatic Shear Banding in High Speed Machining of Ti–6Al–4V: Experiments and Modeling
,”
Int. J. Plast.
,
18
(
4
), pp.
443
459
.
58.
Ye
,
G. G.
,
Xue
,
S. F.
,
Jiang
,
M. Q.
,
Tong
,
X. H.
, and
Dai
,
L. H.
,
2013
, “
Modeling Periodic Adiabatic Shear Band Evolution During High Speed Machining Ti-6Al-4V Alloy
,”
Int. J. Plast.
,
40
, pp.
39
55
.
59.
Liu
,
H.
,
Zhang
,
J.
,
Xu
,
X.
, and
Zhao
,
W.
,
2018
, “
Experimental Study on Fracture Mechanism Transformation in Chip Segmentation of Ti-6Al-4V Alloys During High-Speed Machining
,”
J. Mater. Process. Technol.
,
257
, pp.
132
140
.
60.
Xu
,
B.
,
Zhang
,
J.
,
Liu
,
H.
,
Xu
,
X.
, and
Zhao
,
W.
,
2021
, “
Serrated Chip Formation Induced Periodic Distribution of Morphological and Physical Characteristics in Machined Surface During High-Speed Machining of Ti6Al4V
,”
ASME J. Manuf. Sci. Eng.
,
143
(
10
), p.
101006
.
61.
Jianxin
,
D.
,
Yousheng
,
L.
, and
Wenlong
,
S.
,
2008
, “
Diffusion Wear in Dry Cutting of Ti–6Al–4V With WC/Co Carbide Tools
,”
Wear
,
265
(
11–12
), pp.
1776
1783
.
62.
Courbon
,
C.
,
Pusavec
,
F.
,
Dumont
,
F.
,
Rech
,
J.
, and
Kopac
,
J.
,
2013
, “
Tribological Behaviour of Ti6Al4V and Inconel718 Under Dry and Cryogenic Conditions—Application to the Context of Machining With Carbide Tools
,”
Tribol. Int.
,
66
, pp.
72
82
.
63.
Outeiro
,
J. C.
,
Lenoir
,
P.
, and
Bosselut
,
A.
,
2015
, “
Thermo-Mechanical Effects in Drilling Using Metal Working Fluids and Cryogenic Cooling and Their Impact in Tool Performance
,”
Prod. Eng.
,
9
(
4
), pp.
551
562
.
64.
Govindaraju
,
N.
,
Shakeel Ahmed
,
L.
, and
Pradeep Kumar
,
M.
,
2014
, “
Experimental Investigations on Cryogenic Cooling in the Drilling of AISI 1045 Steel
,”
Mater. Manuf. Process.
,
29
(
11–12
), pp.
1417
1421
.
65.
Ahmed
,
L. S.
,
Govindaraju
,
N.
, and
Pradeep Kumar
,
M.
,
2016
, “
Experimental Investigations on Cryogenic Cooling in the Drilling of Titanium Alloy
,”
Mater. Manuf. Process.
,
31
(
5
), pp.
603
607
.
66.
Perçin
,
M.
,
Aslantas
,
K.
,
Ucun
,
I.
,
Kaynak
,
Y.
, and
Çicek
,
A.
,
2016
, “
Micro-Drilling of Ti–6Al–4V Alloy: The Effects of Cooling/Lubricating
,”
Precis. Eng.
,
45
, pp.
450
462
.
67.
Uçak
,
N.
, and
Çiçek
,
A.
,
2018
, “
The Effects of Cutting Conditions on Cutting Temperature and Hole Quality in Drilling of Inconel 718 Using Solid Carbide Drills
,”
J. Manuf. Process.
,
31
, pp.
662
673
.
68.
Koklu
,
U.
, and
Coban
,
H.
,
2020
, “
Effect of Dipped Cryogenic Approach on Thrust Force, Temperature, Tool Wear and Chip Formation in Drilling of AZ31 Magnesium Alloy
,”
J. Mater. Res. Technol.
,
9
(
3
), pp.
2870
2880
.
69.
Merzouki
,
J.
,
Poulachon
,
G.
,
Rossi
,
F.
,
Ayed
,
Y.
, and
Abrivard
,
G.
,
2020
, “
Effect of Cryogenic Assistance on Hole Shrinkage During Ti6Al4V Drilling
,”
Int. J. Adv. Manuf. Technol.
,
108
(
9–10
), pp.
2675
2686
.
70.
Khanna
,
N.
,
Agrawal
,
C.
,
Gupta
,
M. K.
, and
Song
,
Q.
,
2020
, “
Tool Wear and Hole Quality Evaluation in Cryogenic Drilling of Inconel 718 Superalloy
,”
Tribol. Int.
,
143
, p.
106084
.
71.
Shah
,
P.
,
Khanna
,
N.
, and
Chetan
,
2020
, “
Comprehensive Machining Analysis to Establish Cryogenic LN2 and LCO2 as Sustainable Cooling and Lubrication Techniques
,”
Tribol. Int.
,
148
, p.
106314
.
72.
Nadeem Masood
,
S.
,
Viswamurthy
,
S. R.
, and
Gaddikeri
,
K. M.
,
2020
, “
Composites Airframe Panel Design for Post-Buckling—An Experimental Investigation
,”
Compos. Struct.
,
241
, p.
112104
.
73.
Ismail
,
S. O.
,
Dhakal
,
H. N.
,
Dimla
,
E.
, and
Popov
,
I.
,
2017
, “
Recent Advances in Twist Drill Design for Composite Machining: A Critical Review
,”
Proc. Inst. Mech. Eng. Part B J. Eng. Manuf.
,
231
(
14
), pp.
2527
2542
.
74.
Khashaba
,
U. A.
,
2004
, “
Delamination in Drilling GFR-Thermoset Composites
,”
Compos. Struct.
,
63
(
3–4
), pp.
313
327
.
75.
Liu
,
S.
,
Yang
,
T.
,
Liu
,
C.
,
Jin
,
Y.
,
Sun
,
D.
, and
Shen
,
Y.
,
2020
, “
Modelling and Experimental Validation on Drilling Delamination of Aramid Fiber Reinforced Plastic Composites
,”
Compos. Struct.
,
236
, p.
111907
.
76.
Xu
,
J.
,
Li
,
C.
,
Chen
,
M.
,
El Mansori
,
M.
, and
Paulo Davim
,
J.
,
2020
, “
On the Analysis of Temperatures, Surface Morphologies and Tool Wear in Drilling CFRP/Ti6Al4V Stacks Under Different Cutting Sequence Strategies
,”
Compos. Struct.
,
234
, p.
111708
.
77.
Fu
,
R.
,
Jia
,
Z.
,
Wang
,
F.
,
Jin
,
Y.
,
Sun
,
D.
,
Yang
,
L.
, and
Cheng
,
D.
,
2018
, “
Drill-Exit Temperature Characteristics in Drilling of UD and MD CFRP Composites Based on Infrared Thermography
,”
Int. J. Mach. Tools Manuf.
,
135
, pp.
24
37
.
78.
Tsao
,
C. C.
, and
Hocheng
,
H.
,
2007
, “
Effect of Tool Wear on Delamination in Drilling Composite Materials
,”
Int. J. Mech. Sci.
,
49
(
8
), pp.
983
988
.
79.
Gaugel
,
S.
,
Sripathy
,
P.
,
Haeger
,
A.
,
Meinhard
,
D.
,
Bernthaler
,
T.
,
Lissek
,
F.
,
Kaufeld
,
M.
,
Knoblauch
,
V.
, and
Schneider
,
G.
,
2016
, “
A Comparative Study on Tool Wear and Laminate Damage in Drilling of Carbon-Fiber Reinforced Polymers (CFRP)
,”
Compos. Struct.
,
155
, pp.
173
183
.
80.
Hocheng
,
H.
, and
Tsao
,
C. C.
,
2006
, “
Effects of Special Drill Bits on Drilling-Induced Delamination of Composite Materials
,”
Int. J. Mach. Tools Manuf.
,
46
(
12–13
), pp.
1403
1416
.
81.
Joshi
,
S.
,
Rawat
,
K.
, and
Balan
,
A. S. S.
,
2018
, “
A Novel Approach to Predict the Delamination Factor for Dry and Cryogenic Drilling of CFRP
,”
J. Mater. Process. Technol.
,
262
, pp.
521
531
.
82.
Khanna
,
N.
,
Pusavec
,
F.
,
Agrawal
,
C.
, and
Krolczyk
,
G. M.
,
2020
, “
Measurement and Evaluation of Hole Attributes for Drilling CFRP Composites Using an Indigenously Developed Cryogenic Machining Facility
,”
Measurement
,
154
, p.
107504
.
83.
Iqbal
,
A.
,
Zhao
,
G.
,
Zaini
,
J.
,
Jamil
,
M.
,
Nauman
,
M. M.
,
Khan
,
A. M.
,
Zhao
,
W.
,
He
,
N.
, and
Suhaimi
,
H.
,
2021
, “
CFRP Drilling Under Throttle and Evaporative Cryogenic Cooling and Micro-Lubrication
,”
Compos. Struct.
,
267
, p.
113916
.
84.
Dalle Mura
,
M.
, and
Dini
,
G.
,
2021
, “
Drilling Carbon Fiber Reinforced Plastics With Pre-Cooling Treatment by Cryogenic Fluid
,”
J. Manuf. Process.
,
68
, pp.
23
31
.
85.
Xia
,
T.
,
Kaynak
,
Y.
,
Arvin
,
C.
, and
Jawahir
,
I. S.
,
2016
, “
Cryogenic Cooling-Induced Process Performance and Surface Integrity in Drilling CFRP Composite Material
,”
Int. J. Adv. Manuf. Technol.
,
82
(
1–4
), pp.
605
616
.
86.
Giasin
,
K.
,
Ayvar-Soberanis
,
S.
, and
Hodzic
,
A.
,
2016
, “
Evaluation of Cryogenic Cooling and Minimum Quantity Lubrication Effects on Machining GLARE Laminates Using Design of Experiments
,”
J. Cleaner Prod.
,
135
, pp.
533
548
.
87.
Giasin
,
K.
, and
Ayvar-Soberanis
,
S.
,
2017
, “
Microstructural Investigation of Drilling Induced Damage in Fibre Metal Laminates Constituents
,”
Compos. Part Appl. Sci. Manuf.
,
97
, pp.
166
178
.
88.
Giasin
,
K.
,
Ayvar-Soberanis
,
S.
, and
Hodzic
,
A.
,
2016
, “
The Effects of Minimum Quantity Lubrication and Cryogenic Liquid Nitrogen Cooling on Drilled Hole Quality in GLARE Fibre Metal Laminates
,”
Mater. Des.
,
89
, pp.
996
1006
.
89.
Giasin
,
K.
,
2018
, “
The Effect of Drilling Parameters, Cooling Technology, and Fiber Orientation on Hole Perpendicularity Error in Fiber Metal Laminates
,”
Int. J. Adv. Manuf. Technol.
,
97
(
9
), pp.
4081
4099
.
90.
Shokrani
,
A.
,
Leafe
,
H.
, and
Newman
,
S. T.
,
2019
, “
Cryogenic Drilling of Carbon Fibre Reinforced Plastic With Tool Consideration
,”
Procedia CIRP
,
85
, pp.
55
60
.
91.
Nagaraj
,
A.
,
Uysal
,
A.
, and
Jawahir
,
I. S.
,
2020
, “
An Investigation of Process Performance When Drilling Carbon Fiber Reinforced Polymer (CFRP) Composite Under Dry, Cryogenic and MQL Environments
,”
Procedia Manuf.
,
43
, pp.
551
558
.
92.
Ferreira Batista
,
M.
,
Basso
,
I.
,
de Assis Toti
,
F.
,
Roger Rodrigues
,
A.
, and
Ricardo Tarpani
,
J.
,
2020
, “
Cryogenic Drilling of Carbon Fibre Reinforced Thermoplastic and Thermoset Polymers
,”
Compos. Struct.
,
251
, p.
112625
.
93.
Janakiraman
,
A.
,
Pemmasani
,
S.
,
Sheth
,
S.
,
Kannan
,
C.
, and
Balan
,
A. S. S.
,
2020
, “
Experimental Investigation and Parametric Optimization on Hole Quality Assessment During Drilling of CFRP/GFRP/Al Stacks
,”
J. Inst. Eng. India Ser. C
,
101
(
2
), pp.
291
302
.
94.
Kumar
,
D.
,
Gururaja
,
S.
, and
Jawahir
,
I. S.
,
2020
, “
Machinability and Surface Integrity of Adhesively Bonded Ti/CFRP/Ti Hybrid Composite Laminates Under Dry and Cryogenic Conditions
,”
J. Manuf. Process.
,
58
, pp.
1075
1087
.
95.
Giasin
,
K.
,
Barouni
,
A.
,
Dhakal
,
H. N.
,
Featherson
,
C.
,
Redouane
,
Z.
,
Morkavuk
,
S.
, and
Koklu
,
U.
,
2021
, “
Microstructural Investigation and Hole Quality Evaluation in S2/FM94 Glass-Fibre Composites Under Dry and Cryogenic Conditions
,”
J. Reinf. Plast. Compos.
,
40
(
7–8
), pp.
273
293
.
96.
Koklu
,
U.
,
Morkavuk
,
S.
,
Featherston
,
C.
,
Haddad
,
M.
,
Sanders
,
D.
,
Aamir
,
M.
,
Pimenov
,
D. Y.
, and
Giasin
,
K.
,
2021
, “
The Effect of Cryogenic Machining of S2 Glass Fibre Composite on the Hole Form and Dimensional Tolerances
,”
Int. J. Adv. Manuf. Technol.
,
115
(
1–2
), pp.
125
140
.
97.
Feito
,
N.
,
Diaz-Álvarez
,
J.
,
López-Puente
,
J.
, and
Miguelez
,
M. H.
,
2016
, “
Numerical Analysis of the Influence of Tool Wear and Special Cutting Geometry When Drilling Woven CFRPs
,”
Compos. Struct.
,
138
, pp.
285
294
.
98.
Feito
,
N.
,
Díaz-Álvarez
,
J.
,
López-Puente
,
J.
, and
Miguelez
,
M. H.
,
2018
, “
Experimental and Numerical Analysis of Step Drill Bit Performance When Drilling Woven CFRPs
,”
Compos. Struct.
,
184
, pp.
1147
1155
.
99.
Isbilir
,
O.
, and
Ghassemieh
,
E.
,
2013
, “
Numerical Investigation of the Effects of Drill Geometry on Drilling Induced Delamination of Carbon Fiber Reinforced Composites
,”
Compos. Struct.
,
105
, pp.
126
133
.
100.
Merzouki
,
J.
,
Poulachon
,
G.
,
Rossi
,
F.
,
Ayed
,
Y.
, and
Abrivard
,
G.
,
2017
, “
Method of Hole Shrinkage Radial Forces Measurement in Ti6Al4V Drilling
,”
Procedia CIRP
,
58
, pp.
629
634
.
101.
Makhdum
,
F.
,
Phadnis
,
V. A.
,
Roy
,
A.
, and
Silberschmidt
,
V. V.
,
2014
, “
Effect of Ultrasonically-Assisted Drilling on Carbon-Fibre-Reinforced Plastics
,”
J. Sound Vib.
,
333
(
23
), pp.
5939
5952
.
102.
Xu
,
J.
,
Li
,
C.
,
Chen
,
M.
, and
Ren
,
F.
,
2019
, “
A Comparison Between Vibration Assisted and Conventional Drilling of CFRP/Ti6Al4V Stacks
,”
Mater. Manuf. Process.
,
34
(
10
), pp.
1182
1193
.
103.
Li
,
C.
,
Xu
,
J.
,
Chen
,
M.
,
An
,
Q.
,
El Mansori
,
M.
, and
Ren
,
F.
,
2019
, “
Tool Wear Processes in Low Frequency Vibration Assisted Drilling of CFRP/Ti6Al4V Stacks With Forced Air-Cooling
,”
Wear
,
426–427
, pp.
1616
1623
.
104.
Xu
,
J.
,
Ji
,
M.
,
Chen
,
M.
, and
El Mansori
,
M.
,
2020
, “
Experimental Investigation on Drilling Machinability and Hole Quality of CFRP/Ti6Al4V Stacks Under Different Cooling Conditions
,”
Int. J. Adv. Manuf. Technol.
,
109
(
5–6
), pp.
1527
1539
.
105.
Xu
,
J.
,
Ji
,
M.
,
Paulo Davim
,
J.
,
Chen
,
M.
,
El Mansori
,
M.
, and
Krishnaraj
,
V.
,
2020
, “
Comparative Study of Minimum Quantity Lubrication and Dry Drilling of CFRP/Titanium Stacks Using TiAlN and Diamond Coated Drills
,”
Compos. Struct.
,
234
, p.
111727
.
106.
Seeholzer
,
L.
,
Spahni
,
M.
, and
Wegener
,
K.
,
2021
, “
Influence of Different Cooling Strategies on the Process Temperatures and Chip Transport Quality in One-Shot Drilling CFRP/Al-Stacks
,”
Procedia CIRP
,
101
, pp.
310
313
.
107.
Impero
,
F.
,
Dix
,
M.
,
Squillace
,
A.
,
Prisco
,
U.
,
Palumbo
,
B.
, and
Tagliaferri
,
F.
,
2018
, “
A Comparison Between Wet and Cryogenic Drilling of CFRP/Ti Stacks
,”
Mater. Manuf. Process.
,
33
(
12
), pp.
1354
1360
.
108.
Prisco
,
U.
,
2019
, “
Drilling of CFRP/Ti Stacks in Wet and Cryogenic Condition
,”
J. Mod. Mech. Eng. Technol.
,
6
, pp.
31
39
.
109.
Rodríguez
,
A.
,
Calleja
,
A.
,
de Lacalle
,
L. N. L.
,
Pereira
,
O.
,
Rubio-Mateos
,
A.
, and
Rodríguez
,
G.
,
2021
, “
Drilling of CFRP-Ti6Al4V Stacks Using CO2-Cryogenic Cooling
,”
J. Manuf. Process.
,
64
, pp.
58
66
.
110.
Hong
,
S. Y.
,
1999
,
Cryogenic Machining, U.S. Patent No. US5901623A
.
111.
Oezkaya
,
E.
,
Beer
,
N.
, and
Biermann
,
D.
,
2016
, “
Experimental Studies and CFD Simulation of the Internal Cooling Conditions When Drilling Inconel 718
,”
Int. J. Mach. Tools Manuf.
,
108
, pp.
52
65
.
112.
Oezkaya
,
E.
, and
Biermann
,
D.
,
2018
, “
A New Reverse Engineering Method to Combine FEM and CFD Simulation Three-Dimensional Insight Into the Chipping Zone During the Drilling of Inconel 718 With Internal Cooling
,”
Mach. Sci. Technol.
,
22
(
6
), pp.
881
898
.
113.
Golda
,
P.
,
Schießl
,
R.
, and
Maas
,
U.
,
2019
, “
Heat Transfer Simulation of a Cryogenic Cooling Stream in Machining Operation
,”
Int. J. Heat Mass Transfer
,
144
, p.
118616
.
114.
Dix
,
M.
,
Wertheim
,
R.
,
Schmidt
,
G.
, and
Hochmuth
,
C.
,
2014
, “
Modeling of Drilling Assisted by Cryogenic Cooling for Higher Efficiency
,”
CIRP Ann.
,
63
(
1
), pp.
73
76
.
115.
Astakhov
,
V. P.
,
2006
,
Tribology of Metal Cutting
,
Elsevier
,
New York
.
116.
Rech
,
J.
,
Arrazola
,
P. J.
,
Claudin
,
C.
,
Courbon
,
C.
,
Pusavec
,
F.
, and
Kopac
,
J.
,
2013
, “
Characterisation of Friction and Heat Partition Coefficients at the Tool-Work Material Interface in Cutting
,”
CIRP Ann.
,
62
(
1
), pp.
79
82
.
117.
Courbon
,
C.
,
Pusavec
,
F.
,
Dumont
,
F.
,
Rech
,
J.
, and
Kopac
,
J.
,
2014
, “
Influence of Cryogenic Lubrication on the Tribological Properties of Ti6Al4V and Inconel 718 Alloys Under Extreme Contact Conditions: Influence of Cryogenic Lubrication Under Extreme Contact Conditions
,”
Lubr. Sci.
,
26
(
5
), pp.
315
326
.
118.
Lequien
,
P.
,
Poulachon
,
G.
,
Outeiro
,
J. C.
, and
Rech
,
J.
,
2018
, “
Hybrid Experimental/Modelling Methodology for Identifying the Convective Heat Transfer Coefficient in Cryogenic Assisted Machining
,”
Appl. Therm. Eng.
,
128
, pp.
500
507
.
119.
Khanna
,
N.
,
Agrawal
,
C.
,
Pimenov
,
D.Y.
,
Singla
,
A. K.
,
Machado
,
A. R.
,
Ribeiro da Silva
,
L. R.
,
Gupta
,
M. K.
,
Sarikaya
,
M.
, and
Krolczyk
,
G. M.
,
2021
, “
Review on Design and Development of Cryogenic Machining Setups for Heat Resistant Alloys and Composites
,”
J. Manuf. Process.
,
68
, pp.
398
422
.
120.
Sivaiah
,
P.
, and
Chakradhar
,
D.
,
2018
, “
Effect of Cryogenic Coolant on Turning Performance Characteristics During Machining of 17-4 pH Stainless Steel: A Comparison With MQL, Wet, Dry Machining
,”
CIRP J. Manuf. Sci. Technol.
,
21
, pp.
86
96
.
121.
Kenda
,
J.
,
Pusavec
,
F.
, and
Kopac
,
J.
,
2011
, “
Analysis of Residual Stresses in Sustainable Cryogenic Machining of Nickel Based Alloy—Inconel 718
,”
ASME J. Manuf. Sci. Eng.
,
133
(
4
), p.
041009
.
122.
Follansbee
,
P. S.
, and
Gray
,
G. T.
,
1989
, “
An Analysis of the Low Temperature, Low and High Strain-Rate Deformation of Ti-6AI-4V
,”
Metall. Trans. A
,
20
(
5
), pp.
863
874
.
123.
Johnson
,
G. R.
,
1983
, “
A Constitutive Model and Data for Materials Subjected to Large Strains, High Strain Rates, and High Temperatures
,”
Proceeding of 7th International Symposium on Ballistics
,
The Hague, The Netherlands
,
Apr. 19–21
.
124.
Rotella
,
G.
, and
Umbrello
,
D.
,
2014
, “
Finite Element Modeling of Microstructural Changes in Dry and Cryogenic Cutting of Ti6Al4V Alloy
,”
CIRP Ann.
,
63
(
1
), pp.
69
72
.
125.
Bordin
,
A.
,
Imbrogno
,
S.
,
Rotella
,
G.
,
Bruschi
,
S.
,
Ghiotti
,
A.
, and
Umbrello
,
D.
,
2015
, “
Finite Element Simulation of Semi-Finishing Turning of Electron Beam Melted Ti6Al4V Under Dry and Cryogenic Cooling
,”
Procedia CIRP
,
31
, pp.
551
556
.
126.
Imbrogno
,
S.
,
Sartori
,
S.
,
Bordin
,
A.
,
Bruschi
,
S.
, and
Umbrello
,
D.
,
2017
, “
Machining Simulation of Ti6Al4V Under Dry and Cryogenic Conditions
,”
Procedia CIRP
,
58
, pp.
475
480
.
127.
Umbrello
,
D.
,
Bordin
,
A.
,
Imbrogno
,
S.
, and
Bruschi
,
S.
,
2017
, “
3D Finite Element Modelling of Surface Modification in Dry and Cryogenic Machining of EBM Ti6Al4V Alloy
,”
CIRP J. Manuf. Sci. Technol.
,
18
, pp.
92
100
.
128.
Attanasio
,
A.
,
Ceretti
,
E.
,
Outeiro
,
J.
, and
Poulachon
,
G.
,
2020
, “
Numerical Simulation of Tool Wear in Drilling Inconel 718 Under Flood and Cryogenic Cooling Conditions
,”
Wear
,
458–459
, p.
203403
.
129.
Merzouki
,
J.
,
2018
,
Étude Des Chargements Thermomécaniques Induits Par Le Resserrement Du Trou En Perçage Du Ti6Al4V Sous Assistance Cryogénique
,
ENSAM
,
Paris
.
130.
Liu
,
H.
,
Birembaux
,
H.
,
Ayed
,
Y.
,
Rossi
,
F.
, and
Poulachon
,
G.
,
2022
, “
A Hybrid Modelling Approach for Characterizing Hole Shrinkage Mechanisms in Drilling Ti6Al4V Under Dry and Cryogenic Conditions
,”
Int. J. Adv. Manuf. Technol.
,
118
(
11
), pp.
3849
3868
.
131.
Shi
,
B.
,
Elsayed
,
A.
,
Damir
,
A.
,
Attia
,
H.
, and
M’Saoubi
,
R.
,
2019
, “
A Hybrid Modeling Approach for Characterization and Simulation of Cryogenic Machining of Ti–6Al–4V Alloy
,”
ASME J. Manuf. Sci. Eng.
,
141
(
2
), p.
021021
.
132.
Meyers
,
M. A.
,
Vöhringer
,
O.
, and
Lubarda
,
V. A.
,
2001
, “
The Onset of Twinning in Metals: A Constitutive Description
,”
Acta Mater.
,
49
(
19
), pp.
4025
4039
.
133.
Ziegler
,
W. T.
,
Mullins
,
J. C.
, and
Hwa
,
S. C. P.
,
1963
, “Specific Heat and Thermal Conductivity of Four Commercial Titanium Alloys from 20° to 300°K,”
Advances in Cryogenic Engineering
, Vol.
8
,
K. D.
Timmerhaus
, ed.,
Springer
,
Boston, MA
, pp.
268
277
.
134.
Mills
,
K. C.
,
2002
,
Recommended Values of Thermophysical Properties for Selected Commercial Alloys
,
Woodhead Publishing
,
UK
.
135.
Marquardt
,
E. D.
,
Le
,
J. P.
, and
Radebaugh
,
R.
,
2002
, “Cryogenic material properties database,”
Cryocoolers 11
,
R. G.
Ross, Jr.
, ed.,
Springer
,
Boston, MA
, pp.
681
687
.
136.
Swarnakar
,
A. K.
,
Van der Biest
,
O.
, and
Baufeld
,
B.
,
2011
, “
Thermal Expansion and Lattice Parameters of Shaped Metal Deposited Ti–6Al–4V
,”
J. Alloys Compd.
,
509
(
6
), pp.
2723
2728
.
137.
Phadnis
,
V. A.
,
Makhdum
,
F.
,
Roy
,
A.
, and
Silberschmidt
,
V. V.
,
2013
, “
Drilling in Carbon/Epoxy Composites: Experimental Investigations and Finite Element Implementation
,”
Composites Part A
,
47
, pp.
41
51
.
138.
Isbilir
,
O.
, and
Ghassemieh
,
E.
,
2014
, “
Three-Dimensional Numerical Modelling of Drilling of Carbon Fiber-Reinforced Plastic Composites
,”
J. Compos. Mater.
,
48
(
10
), pp.
1209
1219
.
139.
Sápi
,
Z.
, and
Butler
,
R.
,
2020
, “
Properties of Cryogenic and Low Temperature Composite Materials—A Review
,”
Cryogenics
,
111
, p.
103190
.
140.
Salame
,
C.
,
Bejjani
,
R.
, and
Marimuthu
,
P.
,
2019
, “
A Better Understanding of Cryogenic Machining Using CFD and FEM Simulation
,”
Procedia CIRP
,
81
, pp.
1071
1076
.
141.
Bejjani
,
R.
,
Salame
,
C.
, and
Olsson
,
M.
,
2021
, “
An Experimental and Finite Element Approach for a Better Understanding of Ti-6Al-4V Behavior When Machining Under Cryogenic Environment
,”
Materials
,
14
(
11
), p.
2796
.
142.
Sun
,
Y.
,
Huang
,
B.
,
Puleo
,
D. A.
, and
Jawahir
,
I. S.
,
2015
, “
Enhanced Machinability of Ti-5553 Alloy From Cryogenic Machining: Comparison With MQL and Flood-Cooled Machining and Modeling
,”
Procedia CIRP
,
31
, pp.
477
482
.
143.
Nouzil
,
I.
,
Pervaiz
,
S.
, and
Kannan
,
S.
,
2021
, “
Role of Jet Radius and Jet Location in Cryogenic Machining of Inconel 718: A Finite Element Method Based Approach
,”
Int. J. Interact. Des. Manuf.
,
15
(
1
), pp.
1
19
.
144.
Pervaiz
,
S.
,
Kannan
,
S.
,
Anwar
,
S.
, and
Huo
,
D.
,
2021
, “
Machinability Analysis of Dry and Liquid Nitrogen–Based Cryogenic Cutting of Inconel 718: Experimental and FE Analysis
,”
Int. J. Adv. Manuf. Technol.
,
118
(
11
), pp.
3801
3818
.
145.
Liu
,
H.
,
Wang
,
C.
,
Liu
,
Z.
,
Liu
,
K.
,
Jiang
,
S.
, and
Wang
,
Y.
,
2021
, “
Numerical Prediction of Machining-Induced Surface Residual Stress for TC4 Cryogenic Turning
,”
Int. J. Adv. Manuf. Technol.
,
114
(
1–2
), pp.
131
144
.
146.
Ayed
,
Y.
,
Robert
,
C.
,
Germain
,
G.
, and
Ammar
,
A.
,
2016
, “
Development of a Numerical Model for the Understanding of the Chip Formation in High-Pressure Water-Jet Assisted Machining
,”
Finite Elem. Anal. Des.
,
108
, pp.
1
8
.
147.
Oezkaya
,
E.
,
Iovkov
,
I.
, and
Biermann
,
D.
,
2019
, “
Fluid Structure Interaction (FSI) Modelling of Deep Hole Twist Drilling With Internal Cutting Fluid Supply
,”
CIRP Ann.
,
68
(
1
), pp.
81
84
.
148.
Kheireddine
,
A. H.
,
Ammouri
,
A. H.
,
Lu
,
T.
,
Jawahir
,
I. S.
, and
Hamade
,
R. F.
,
2013
, “
An FEM Analysis With Experimental Validation to Study the Hardness of In-Process Cryogenically Cooled Drilled Holes in Mg AZ31b
,”
Procedia CIRP
,
8
, pp.
588
593
.
149.
Kheireddine
,
A. H.
,
Ammouri
,
A. H.
,
Lu
,
T.
,
Dillon
,
O. W.
,
Hamade
,
R. F.
, and
Jawahir
,
I. S.
,
2015
, “
An Experimental and Numerical Study of the Effect of Cryogenic Cooling on the Surface Integrity of Drilled Holes in AZ31B Mg Alloy
,”
Int. J. Adv. Manuf. Technol.
,
78
(
1–4
), pp.
269
279
.
150.
Astakhov
,
V. P.
,
2011
, “2 - Drilling,”
Modern Machining Technology
,
J.
Paulo Davim
, ed.,
Woodhead Publishing
,
UK
, pp.
79
212
.
151.
Sandvik Coromant
, “
Drilling Tips
,” https://www.sandvik.coromant.com/en-gb/knowledge/drilling/pages/drilling-tips.aspx, Accessed March 23, 2022.
152.
Shah
,
P.
,
Bhat
,
P.
, and
Khanna
,
N.
,
2021
, “
Life Cycle Assessment of Drilling Inconel 718 Using Cryogenic Cutting Fluids While Considering Sustainability Parameters
,”
Sustain. Energy Technol. Assess.
,
43
, p.
100950
.
153.
Koklu
,
U.
, and
Morkavuk
,
S.
,
2019
, “
Cryogenic Drilling of Carbon Fiber-Reinforced Composite (CFRP)
,”
Surf. Rev. Lett.
,
26
(
9
), p.
1950060
.
154.
Morkavuk
,
S.
,
Köklü
,
U.
,
Bağcı
,
M.
, and
Gemi
,
L.
,
2018
, “
Cryogenic Machining of Carbon Fiber Reinforced Plastic (CFRP) Composites and the Effects of Cryogenic Treatment on Tensile Properties: A Comparative Study
,”
Composites Part B
,
147
, pp.
1
11
.
155.
Zhang
,
C.
,
Zhang
,
X.
,
Duan
,
Y.
,
Xia
,
Y.
,
Ming
,
Y.
, and
Zhu
,
Y.
,
2021
, “
Deformation Resistance Performance of Carbon Fiber-Reinforced Plastic Machined by Controlling Drilling Area Temperature Below the Glass Transition Temperature
,”
Materials
,
14
(
6
), p.
1394
.
156.
Chakravarthy
,
V. V. K.
,
Rajmohan
,
T.
,
Vijayan
,
D.
, and
Palanikumar
,
K.
,
2021
, “
Sustainable Drilling of Nano SiC Reinforced Al Matrix Composites Using MQL and Cryogenic Cooling for Achieving the Better Surface Integrity
,”
Silicon
,
14
(
4
), pp.
1787
1805
.
157.
Thirumalai Kumaran
,
S.
,
Ko
,
T. J.
,
Li
,
C.
,
Yu
,
Z.
, and
Uthayakumar
,
M.
,
2017
, “
Rotary Ultrasonic Machining of Woven CFRP Composite in a Cryogenic Environment
,”
J. Alloys Compd.
,
698
, pp.
984
993
.
158.
Rana
,
A.
,
Dongre
,
G.
, and
Joshi
,
S. S.
,
2019
, “
Analytical Modeling of Exit Burr in Drilling of Ti6Al4V Alloy
,”
Sādhanā
,
44
(
6
), p.
133
.
159.
Cuesta
,
M.
,
Aristimuño
,
P.
,
Garay
,
A.
, and
Arrazola
,
P. J.
,
2016
, “
Heat Transferred to the Workpiece Based on Temperature Measurements by IR Technique in Dry and Lubricated Drilling of Inconel 718
,”
Appl. Therm. Eng.
,
104
, pp.
309
318
.
160.
Lazoglu
,
I.
,
Poulachon
,
G.
,
Ramirez
,
C.
,
Akmal
,
M.
,
Marcon
,
B.
,
Rossi
,
F.
,
Outeiro
,
J. C.
, and
Krebs
,
M.
,
2017
, “
Thermal Analysis in Ti-6Al-4V Drilling
,”
CIRP Ann.
,
66
(
1
), pp.
105
108
.
161.
Dang
,
J.
,
Cai
,
X.
,
Yu
,
D.
,
An
,
Q.
,
Ming
,
W.
, and
Chen
,
M.
,
2020
, “
Effect of Material Microstructure on Tool Wear Behavior During Machining Additively Manufactured Ti6Al4V
,”
Arch. Civ. Mech. Eng.
,
20
(
1
), p.
4
.
162.
Islam
,
M. N.
, and
Boswell
,
B.
,
2019
, “
Effect of Cooling Methods on Cutting Temperature, Cutting Force and Hole Quality in Drilling of Three Ferrous Alloys
,”
J. Phys. Conf. Ser.
,
1150
(
1
), p.
012068
.
163.
Liao
,
Z.
,
la Monaca
,
A.
,
Murray
,
J.
,
Speidel
,
A.
,
Ushmaev
,
D.
,
Clare
,
A.
,
Axinte
,
D.
, and
M’Saoubi
,
R.
,
2021
, “
Surface Integrity in Metal Machining—Part I: Fundamentals of Surface Characteristics and Formation Mechanisms
,”
Int. J. Mach. Tools Manuf.
,
162
, p.
103687
.
164.
la Monaca
,
A.
,
Murray
,
J. W.
,
Liao
,
Z.
,
Speidel
,
A.
,
Robles-Linares
,
J. A.
,
Axinte
,
D. A.
,
Hardy
,
M. C.
, and
Clare
,
A. T.
,
2021
, “
Surface Integrity in Metal Machining—Part II: Functional Performance
,”
Int. J. Mach. Tools Manuf.
,
164
, p.
103718
.
165.
Musfirah
,
A. H.
,
Ghani
,
J. A.
, and
Haron
,
C. H. C.
,
2017
, “
Tool Wear and Surface Integrity of Inconel 718 in Dry and Cryogenic Coolant at High Cutting Speed
,”
Wear
,
376–377
, pp.
125
133
.
166.
Iqbal
,
A.
,
Zhao
,
G.
,
Zaini
,
J.
,
Gupta
,
M. K.
,
Jamil
,
M.
,
He
,
N.
,
Nauman
,
M. M.
,
Mikolajczyk
,
T.
, and
Pimenov
,
D. Y.
,
2021
, “
Between-the-Holes Cryogenic Cooling of the Tool in Hole-Making of Ti-6Al-4V and CFRP
,”
Materials
,
14
(
4
), p.
795
.
167.
Giasin
,
K.
,
Dad
,
A.
,
Brousseau
,
E.
,
Pimenov
,
D.
,
Mia
,
M.
,
Morkavuk
,
S.
, and
Koklu
,
U.
,
2021
, “
The Effects of Through Tool Cryogenic Machining on the Hole Quality in GLARE® Fibre Metal Laminates
,”
J. Manuf. Process.
,
64
, pp.
996
1012
.
168.
Sastry
,
C. C.
,
Hariharan
,
P.
, and
Pradeep Kumar
,
M.
,
2019
, “
Experimental Investigation of Dry, Wet and Cryogenic Boring of AA 7075 Alloy
,”
Mater. Manuf. Process.
,
34
(
7
), pp.
814
831
.
169.
Sastry
,
C. C.
,
Gokulakrishnan
,
K.
,
Hariharan
,
P.
,
Kumar
,
M. P.
, and
Boopathy
,
S. R.
,
2020
, “
Investigation of Boring on Gunmetal in Dry, Wet and Cryogenic Conditions
,”
J. Braz. Soc. Mech. Sci. Eng.
,
42
(
1
), p.
16
.
170.
Sastry
,
C. C.
,
Abeens
,
M.
,
Pradeep
,
N.
, and
Manickam
,
M. A. M.
,
2020
, “
Microstructural Analysis, Radiography, Tool Wear Characterization, Induced Residual Stress and Corrosion Behavior of Conventional and Cryogenic Trepanning of DSS 2507
,”
J. Mech. Sci. Technol.
,
34
(
6
), pp.
2535
2547
.
171.
Shakeel Ahmed
,
L.
, and
Pradeep Kumar
,
M.
,
2016
, “
Multiresponse Optimization of Cryogenic Drilling on Ti-6Al-4V Alloy Using Topsis Method
,”
J. Mech. Sci. Technol.
,
30
(
4
), pp.
1835
1841
.
172.
Bordin
,
A.
,
Sartori
,
S.
,
Bruschi
,
S.
, and
Ghiotti
,
A.
,
2017
, “
Experimental Investigation on the Feasibility of Dry and Cryogenic Machining as Sustainable Strategies When Turning Ti6Al4V Produced by Additive Manufacturing
,”
J. Cleaner Prod.
,
142
, pp.
4142
4151
.
You do not currently have access to this content.