Abstract

This paper describes the application of a new manufacturing process for low-cost and rapid consolidation and curing of advanced thermoset composites that avoids the use of expensive prepreg, autoclaving, and thermally induced curing. The process, called VIPE, uses a novel tooling design that combines vacuum infusion (VI) of a dry preform with resin, a rigidly backed pressure focusing layer (P) made of an elastomer to consolidate the wet preform with uniform pressure, and high-energy electron beam curing (E). A VIPE tool is engineered and fabricated to manufacture 3D laminate bicycle seats composed of woven carbon fiber textile and an electron beam-curable epoxy acrylate. Details of the tooling design discussed include computational fluid dynamics (CFD) simulation of the vacuum infusion, iterative structural finite element analysis (FEA) to synthesize the pressure focusing layer (PFL), structural FEA to design the top mold made of a composite sandwich structure for electron beam transparency, and Monte Carlo electron absorption simulations to specify the e-beam energy level. Ten parts are fabricated using the matched tool (bottom aluminum mold covered with silicone layer and top mold with carbon/epoxy skins separated by foam core) after the dry textile preform contained within is infused with resin, the tool halves are clamped under load, and a 3.0 MeV e-beam machine bombards the tool for less than 1 min. Part thickness, part stiffness, surface roughness, and fiber and void volume fractions measurements show that aerospace quality parts with low cycle times are achievable, although there is high variability due to the small number of replicates and need for process optimization.

References

1.
“Global Thermoset Composites Industry,” Report #6033124, Global Industry Analysts, Inc., April 2021.
2.
Beziers
,
D.
,
Perilleux
,
P.
, and
Grenie
,
Y.
,
1996
, “
Composite Structures Obtained by Ionization Curing
,”
Radiat. Phys. Chem.
,
48
(
2
), pp.
171
177
.
3.
Crasto
,
A. S.
,
Kim
,
R.
, and
Rice
,
B. P.
,
1997
, “
Electron Beam Cure of Composites for Aerospace Structures
,”
Proceedings of ICCM-11
,
Gold Coast, Australia
,
July 14–18
, pp.
IV-271
278
.
4.
Lopata
,
V. J.
,
Saunders
,
C. B.
,
Singh
,
A.
,
Janke
,
C. J.
,
Wrenn
,
G. E.
, and
Havens
,
S. J.
,
1999
, “
Electron-Beam-Curable Epoxy Resins for the Manufacture of High-Performance Composites
,”
Radiat. Phys. Chem.
,
56
(
4
), pp.
405
416
.
5.
Glauser
,
T.
,
Johansson
,
M.
, and
Hult
,
A.
,
2000
, “
A Comparison of Radiation and Thermal Curing of Thick Composites
,”
Macromol. Mater. Eng.
,
274
(
1
), pp.
25
30
.
6.
Berejka
,
A. J.
, and
Eberle
,
C.
,
2002
, “
Electron Beam Curing of Composites in North America
,”
Radiat. Phys. Chem.
,
63
(
3–6
), pp.
551
556
.
7.
Lopata
,
V. J.
, and
Sidwell
,
D. R.
,
2003
, “Electron Beam Processing for Composite Manufacturing and Repair,” Sept./Oct. 2003, pp.
32
42
.
8.
Zsigmond
,
B.
,
Halasz
,
L.
, and
Czvikovszky
,
T.
,
2003
, “
Electron Beam Processing of Carbon Fibre Reinforced Braided Composites
,”
Radiat. Phys. Chem.
,
67
(
3–4
), pp.
441
445
.
9.
Nishitsuji
,
D. A.
,
Marinucci
,
G.
,
Evora
,
M. C.
, and
Silva
,
L. G. A.
,
2010
, “
Cationic Concentration Effects on Electron Beam Cured of Carbon-Epoxy Composites
,”
Radiat. Phys. Chem.
,
79
(
3
), pp.
306
309
.
10.
Vautard
,
F.
,
Ozcan
,
S.
,
Poland
,
L.
,
Nardin
,
M.
, and
Meyer
,
H.
,
2013
, “
Influence of Thermal History on the Mechanical Properties of Carbon Fiber-Acrylate Composites Cured by Electron Beam and Thermal Processes
,”
Compos. Part A Appl. Sci. Manuf.
,
45
, pp.
162
172
.
11.
Chappas
,
W. J.
,
Devney
,
B. G.
,
Olding
,
R. P.
, and
McLaughlin
,
W. L.
,
1999
, “
EB Curing of Maritime Composite Structures
,”
Radiat. Phys. Chem.
,
56
(
4
), pp.
417
427
.
12.
Saunder
,
C.
,
Lopata
,
V.
,
Barnard
,
J.
, and
Stepanik
,
T.
,
2000
, “
Electron Beam Curing—Taking Good Ideas to the Manufacturing Floor
,”
Radiat. Phys. Chem.
,
57
(
3–6
), pp.
441
445
.
13.
Jianwen
,
B.
,
Fengmei
,
L.
, and
Yang
,
L.
,
2000
, “
Study on the Heat-Resistant EB Curing Composites
,”
Proceedings of JAERI-Conf 2000-001
,
Kyoto, Japan
,
Oct. 25–29, 1999
, pp.
235
38
.
14.
Coqueret
,
X.
,
Krzeminski
,
M.
,
Ponsaud
,
P.
, and
Defoort
,
B.
,
2009
, “
Recent Advances in Electron-Beam Curing of Carbon Fiber-Reinforced Composites
,”
Radiat. Phys. Chem.
,
78
(
7–8
), pp.
557
561
.
15.
Vautard
,
F.
,
Grappe
,
H.
, and
Ozcan
,
S.
,
2014
, “
Engineering Interface Chemistry to Improve the Strength of Carbon Fiber Composites Cured by Electron Beam
,”
Ind. Eng. Chem. Res.
,
53
(
32
), pp.
12729
12736
.
16.
Zhang
,
J.
,
Duan
,
Y.
,
Wang
,
B.
, and
Zhang
,
X.
,
2020
, “
Interfacial Enhancement for Carbon Fibre Reinforced Electron Beam Cured Polymer Composite by Microwave Irradiation
,”
Polymer
,
192
(
6
), p.
122327
.
17.
Goodman
,
D. L.
,
Byrne
,
C. A.
,
Yen
,
A.
,
Moulton
,
R.
,
Dixon
,
D.
, and
Costen
,
R. C.
,
1999
, “
Automated Tape Placement With In-Situ Electron Beam Cure
,”
International SAMPE Symposium
,
Long Beach, CA
,
May 23–27
, Vol. 44, p.
269
.
18.
Fengmei
,
L.
,
Jianwen
,
B.
,
Xiangbao
,
C.
,
Huaying
,
B.
, and
Huiliang
,
W.
,
2002
, “
Factors Influencing EB Curing of Epoxy Matrix
,”
Radiat. Phys. Chem.
,
63
(
3–6
), pp.
557
561
.
19.
Sui
,
G.
,
Zhang
,
Z.
,
Liang
,
Z.
, and
Chen
,
C.
,
2003
, “
Dynamic Mechanical Studies on Epoxy Resins Cured by Electron Beam Radiation
,”
Mater. Sci. Eng.
,
342
(
1–2
), pp.
28
37
.
20.
Abliz
,
D.
,
Duan
,
Y.
,
Zhao
,
X.
, and
Li
,
D.
,
2014
, “
Low-Energy Electron Beam Cured Tape Placement for Out-of-Autoclave Fabrication of Advanced Polymer Composites
,”
Compos. Part A Appl. Sci. Manuf.
,
65
, pp.
73
82
.
21.
Walczyk
,
D.
,
Hoffman
,
C.
,
Righi
,
M.
,
De
,
S.
, and
Kuppers
,
J.
,
2013
, “Consolidating and Curing of Thermoset Composite Parts by Pressing Between a Heated Rigid Mold and Customized Rubber-Faced Mold,” U.S. Patent 8,511,362, Issued on Aug. 20.
22.
Walczyk
,
D.
,
Kuppers
,
J.
, and
Hoffman
,
C.
,
2011
, “
Curing and Consolidation of Advanced Thermoset Composite Laminate Parts by Pressing Between a Heated Mold and Customized Rubber-Faced Mold
,”
ASME J. Manuf. Sci. Eng.
,
133
(
1
), p.
011002
.
23.
Walczyk
,
D.
, and
Kuppers
,
J.
,
2012
, “
Thermal Press Curing of Advanced Thermoset Composite Laminate Parts
,”
Compos. Part A
,
43
(
4
), pp.
635
646
.
24.
Kuppers
,
J.
, and
Walczyk
,
D.
,
2014
, “
Refinement of the Thermal Press Curing Process for Advanced Composites
,”
ASME J. Manuf. Sci. Eng.
,
136
(
2
), p.
021014
.
25.
Malek
,
P.
, and
Walczyk
,
D.
,
2016
, “
Silicone Rubber Properties During Consolidation/Curing of Advanced Composites Using Specialized Elastomeric Tooling (SET)
,”
ASME J. Manuf. Sci. Eng.
,
138
(
2
), p.
021002
.
26.
Garofalo
,
J.
,
Walczyk
,
D.
, and
Kuppers
,
J.
,
2017
, “
Rapid Consolidation and Curing of Vacuum-Infused Thermoset Composite Parts
,”
ASME J. Manuf. Sci. Eng.
,
139
(
2
), p.
021010
.
27.
Garofalo
,
J.
,
Walczyk
,
D.
, and
Bucinell
,
R.
,
2019
, “
Low-Cost Manufacturing and Recycling of Advanced Biocomposites
,”
J. Nat. Fibers
,
16
(
3
), pp.
412
426
.
28.
Rizzolo
,
R.
,
Walczyk
,
D.
,
Kuppers
,
J.
,
Montoney
,
D.
, and
Galloway
,
R.
,
2019
, “
Rapid Consolidation and Curing of Advanced Composites Using Electron Beam Irradiation
,”
J. Eng. Manuf.
,
233
(
4
), pp.
1168
1181
.
29.
Wenger
,
W.
,
Dickson
,
G. R.
,
McIlhagger
,
R.
, and
Miller
,
P. P.
,
1992
, “
The Surface-Finish Characteristics of Composite Components
,”
J. Mater. Process. Technol.
,
33
(
4
), pp.
439
452
.
You do not currently have access to this content.