Abstract

Recently, the availability of various materials and ongoing research in developing advanced systems for multi-material additive manufacturing (MMAM) have opened doors for innovation in functional products. One major concern of MMAM is the strength at the interface between materials. This article hypothesizes overlapping and interlacing materials to enhance the bonding strength. To test this hypothesis, we need a computer-aided manufacturing (CAM) tool that can process the overlapped material regions. However, existing computational tools lack key multi-material design processing features and have certain limitations in making full use of the material information, which restricts the testing of our hypothesis. Therefore, this research also develops a new MMAM slicing framework that efficiently identifies the boundaries for materials to develop different advanced features. By modifying a ray tracing technology, we develop layered-depth material images (LDMI) to process the material information from computer-aided design (CAD) models for slicing and process planning. Each sample point in the LDMI has associated material and geometric properties that are used to identify the multi-material regions. Based on the material information in each slice, interlocking joint (T-Joint) and interlacing infill are generated in the regions with multiple materials. Tensile tests have been performed to verify the enhancement of mechanical properties by the use of overlapping and interlacing materials.

References

1.
Vaezi
,
M.
,
Chianrabutra
,
S.
,
Mellor
,
B.
, and
Yang
,
S.
,
2013
, “
Multiple Material Additive Manufacturing—Part 1: A Review: This Review Paper Covers a Decade of Research on Multiple Material Additive Manufacturing Technologies Which Can Produce Complex Geometry Parts With Different Materials
,”
Virtual Phys. Prototyp
,
8
(
1
), pp.
19
50
.
2.
Bandyopadhyay
,
A.
, and
Heer
,
B.
,
2018
, “
Additive Manufacturing of Multi-Material Structures
,”
Mater. Sci. Eng. R Rep.
,
129
(
17
), pp.
1
16
.
3.
Sreeramagiri
,
P.
,
Bhagavatam
,
A.
,
Ramakrishnan
,
A.
,
Alrehaili
,
H.
, and
Dinda
,
G. P.
,
2020
, “
Design and Development of a High-Performance N-Based Superalloy WSU 150 for Additive Manufacturing
,”
J. Mater. Sci. Technol.
,
47
(
2
), pp.
20
28
.
4.
Brackett
,
D.
,
Ashcroft
,
I.
, and
Hague
,
R.
,
2011
, “
Topology Optimization for Additive Manufacturing
,”
Proceedings of the Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 8–10
, pp.
348
362
.
5.
Meisel
,
N.
, and
Williams
,
C.
,
2015
, “
An Investigation of Key Design for Additive Manufacturing Constraints in Multimaterial Three-Dimensional Printing
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111406
.
6.
Tibbits
,
S.
,
2014
, “
4D Printing: Multi-Material Shape Change
,”
Architectural Design
,
84
(
1
), pp.
116
121
.
7.
Salonitis
,
K.
,
Pandremenos
,
J.
,
Paralikas
,
J.
, and
Chryssolouris
,
G.
,
2009
, “
Multifunctional Materials Used in Automotive Industry: A Critical Review
,”
Engineering Against Fracture
,
Springer
,
New York
, pp.
59
70
.
8.
Ribeiro
,
M.
,
Carneiro
,
O. S.
, and
da Silva
,
A. F.
,
2019
, “
Interface Geometries in 3D Multi-Material Prints by Fused Filament Fabrication
,”
Rapid. Prototyp. J.
,
25
(
1
), pp.
38
46
.
9.
Van Hoa
,
S.
,
Duc Hoang
,
M.
, and
Simpson
,
J.
,
2017
, “
Manufacturing Procedure to Make Flat Thermoplastic Composite Laminates by Automated Fibre Placement and Their Mechanical Properties
,”
J. Thermoplast. Compos. Mater.
,
30
(
12
), pp.
1693
1712
.
10.
Nawab
,
Y.
,
Hamdani
,
S. T. A.
, and
Shaker
,
K.
,
2017
,
Structural Textile Design: Interlacing and Interlooping
,
CRC Press
,
Boca Raton, FL
.
11.
Huang
,
P.
,
Wang
,
C. C. L.
, and
Chen
,
Y.
,
2014
, “Algorithms for Layered Manufacturing in Image Space,”
ASME Advances in Computers and Information in Engineering Research
, Vol.
1
,
J. G.
Michopoulos
,
C. J. J.
Paredis
,
D. W.
Rosen
, and
J. M.
Vance
, eds.,
ASME Press
,
New York
, pp.
377
410
.
12.
Sitthi-Amorn
,
P.
,
Ramos
,
J. E.
,
Wangy
,
Y.
,
Kwan
,
J.
,
Lan
,
J.
,
Wang
,
W.
, and
Matusik
,
W.
,
2015
, “
Multifab: A Machine Vision Assisted Platform for Multi-Material 3D Printing
,”
ACM Trans. Graph. (TOG)
,
34
(
4
), pp.
1
11
.
13.
Demir
,
A. G.
, and
Previtali
,
B.
,
2017
, “
Multi-Material Selective Laser Melting of Fe/Al-12Si Components
,”
Manufact. Lett.
,
11
(
1
), pp.
8
11
.
14.
Matte
,
C.-D.
,
Pearson
,
M.
,
Trottier-Cournoyer
,
F.
,
Dafoe
,
A.
, and
Kwok
,
T. H.
,
2019
, “
Automated Storage and Active Cleaning for Multi-Material Digital-Light-Processing Printer
,”
Rapid. Prototyp. J.
,
25
(
5
), pp.
864
874
.
15.
Brennan
,
R.
,
Turcu
,
S.
,
Hall
,
A.
,
Hagh
,
N.
, and
Safari
,
A.
,
2003
, “
Fabrication of Electroceramic Components by Layered Manufacturing (LM)
,”
Ferroelectrics
,
293
(
1
), pp.
3
17
.
16.
Roach
,
D. J.
,
Hamel
,
C. M.
,
Dunn
,
C. K.
,
Johnson
,
M. V.
,
Kuang
,
X.
, and
Qi
,
H. J.
,
2019
, “
The m4 3D Printer: A Multi-Material Multi-Method Additive Manufacturing Platform for Future 3D Printed Structures
,”
Addit. Manuf.
,
29
(
1
), p.
100819
.
17.
Deng
,
D.
,
Kwok
,
T.-H.
, and
Chen
,
Y.
,
2017
, “
Four-Dimensional Printing: Design and Fabrication of Smooth Curved Surface Using Controlled Self-Folding
,”
ASME J. Mech. Des.
,
139
(
8
), p.
081702
.
18.
Han
,
D.
, and
Lee
,
H.
,
2020
, “
Recent Advances in Multi-Material Additive Manufacturing: Methods and Applications
,”
Curr. Opin. Chem. Eng.
,
28
(
1
), pp.
158
166
.
19.
Aremu
,
A. O.
,
Brennan-Craddock
,
J.
,
Panesar
,
A.
,
Ashcroft
,
I.
,
Hague
,
R. J.
,
Wildman
,
R. D.
, and
Tuck
,
C.
,
2017
, “
A Voxel-Based Method of Constructing and Skinning Conformal and Functionally Graded Lattice Structures Suitable for Additive Manufacturing
,”
Addit. Manuf.
,
13
(
6
), pp.
1
13
.
20.
Jones
,
M. W.
,
Baerentzen
,
J. A.
, and
Sramek
,
M.
,
2006
, “
3D Distance Fields: A Survey of Techniques and Applications
,”
IEEE Trans. Visualiz. Comput. Graph.
,
12
(
4
), pp.
581
599
.
21.
Muller
,
P.
,
Hascoet
,
J.-Y.
, and
Mognol
,
P.
,
2014
, “
Toolpaths for Additive Manufacturing of Functionally Graded Materials (FGM) Parts
,”
Rapid. Prototyp. J.
,
20
(
6
), pp.
511
522
.
22.
Qu
,
X.
, and
Langrana
,
N. A.
,
2001
, “
A System Approach in Extrusion-Based Multi-Material CAD
,”
International Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 6–8
, pp.
313
321
.
23.
Leung
,
Y.-S.
,
Kwok
,
T.-H.
,
Mao
,
H.
, and
Chen
,
Y.
,
2019
, “
Digital Material Design Using Tensor-Based Error Diffusion for Additive Manufacturing
,”
Comput. Aided Des.
,
114
(
C
), pp.
224
235
.
24.
Rossing
,
L.
,
Scharff
,
R. B.
,
Chömpff
,
B.
,
Wang
,
C. C. L.
, and
Doubrovski
,
E. L.
,
2020
, “
Bonding Between Silicones and Thermoplastics Using 3D Printed Mechanical Interlocking
,”
Mater. Des.
,
186
(
1
), p.
108254
.
25.
Vu
,
I. Q.
,
Bass
,
L. B.
,
Williams
,
C. B.
, and
Dillard
,
D. A.
,
2018
, “
Characterizing the Effect of Print Orientation on Interface Integrity of Multi-Material Jetting Additive Manufacturing
,”
Addit. Manuf.
,
22
(
6
), pp.
447
461
.
26.
Lumpe
,
T. S.
,
Mueller
,
J.
, and
Shea
,
K.
,
2019
, “
Tensile Properties of Multi-Material Interfaces in 3D Printed Parts
,”
Mater. Des.
,
162
(
1
), pp.
1
9
.
27.
Wang
,
C. C. L.
,
Leung
,
Y. -S.
, and
Chen
,
Y.
,
2010
, “
Solid Modeling of Polyhedral Objects by Layered Depth-Normal Images on the GPU
,”
Comput. Aided Des.
,
42
(
6
), pp.
535
544
.
28.
Kwok
,
T.-H.
,
2019
, “
Comparing Slicing Technologies for Digital Light Processing Printing
,”
ASME J. Comput. Inf. Sci. Eng.
,
19
(
4
), p.
044502
.
29.
Heidelberger
,
B.
,
Teschner
,
M.
, and
Gross
,
M.
,
2003
, “
Real-Time Volumetric Intersections of Deforming Objects
,”
8th Workshop on Vision, Modeling, and Visualization
,
Munich, Germany
,
Nov. 19–21
, pp.
461
468
.
30.
Liu
,
F.
,
Huang
,
M.-C.
,
Liu
,
X.-H.
, and
Wu
,
E.-H.
,
2010
, “
Freepipe: A Programmable Parallel Rendering Architecture for Efficient Multi-Fragment Effects
,”
ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games
,
Washington, DC
,
Feb. 19–21
, pp.
75
82
.
31.
Wei
,
C.
,
Li
,
L.
,
Zhang
,
X.
, and
Chueh
,
Y.-H.
,
2018
, “
3D Printing of Multiple Metallic Materials Via Modified Selective Laser Melting
,”
CIRP. Ann.
,
67
(
1
), pp.
245
248
.
32.
Zhang
,
Y.
, and
Bandyopadhyay
,
A.
,
2018
, “
Direct Fabrication of Compositionally Graded Ti-al2o3 Multi-Material Structures Using Laser Engineered Net Shaping
,”
Addit. Manuf.
,
21
(
15
), pp.
104
111
.
You do not currently have access to this content.