Abstract

In recent years, additive manufacturing (AM) has gained prominence in rapid prototyping and production of structural components with complex geometries. Magnesium alloys, which have a strength-to-weight ratio that is superior compared with steel and aluminum alloys, have shown potential in lightweighting applications. However, commercial beam-based AM technologies have limited success with magnesium alloys due to vaporization and hot cracking. Therefore, as an alternative approach, we propose the use of a near net-shape solid-state additive manufacturing process, additive friction stir deposition (AFSD), to fabricate magnesium alloys in bulk. In this study, a parametric investigation was performed to quantify the effect of process parameters on AFSD build quality including volumetric defects and surface quality in magnesium alloy AZ31B. In order to understand the effect of the AFSD process on structural integrity in the magnesium alloy AZ31B, in-depth microstructure and mechanical property characterization was conducted on a bulk AFSD build fabricated with a set of acceptable process parameters. Results of the microstructure analysis of the as-deposited AFSD build revealed bulk microstructure similar to wrought magnesium alloy AZ31 plate. Additionally, similar hardness measurements were found in AFSD build compared with control wrought specimens. While tensile test results of the as-deposited AFSD build exhibited a 20% drop in yield strength (YS), nearly identical ultimate strength was observed compared with the wrought control. The experimental results of this study illustrate the potential of using the AFSD process to additively manufacture Mg alloys for load bearing structural components with achieving wrought-like microstructure and mechanical properties.

References

1.
Hirsch
,
J.
, and
Al-Samman
,
T.
,
2013
, “
Superior Light Metals by Texture Engineering: Optimized Aluminum and Magnesium Alloys for Automotive Applications
,”
Acta Mater.
,
61
(
3
), pp.
818
843
.
2.
Marsavina
,
L.
,
Iacoviello
,
F.
,
Dan Pirvulescu
,
L.
,
Di Cocco
,
V.
, and
Rusu
,
L.
,
2019
, “
Engineering Prediction of Fatigue Strength for AM50 Magnesium Alloys
,”
Int. J. Fatigue
,
127
, pp.
10
15
.
3.
McClelland
,
Z.
,
Avery
,
D. Z.
,
Williams
,
M. B.
,
Mason
,
C. J. T.
,
Rivera
,
O. G.
,
Leah
,
C.
,
Allison
,
P. G.
,
Jordon
,
J. B.
,
Martens
,
R. L.
, and
Hardwick
,
N.
,
2019
, “Microstructure and Mechanical Properties of High Shear Material Deposition of Rare Earth Magnesium Alloys WE43,”
The Minerals, Metals & Materials Series
,
Springer
,
Cham, Switzerland
, pp.
277
282
.
4.
Kulekci
,
M. K.
,
2008
, “
Magnesium and Its Alloys Applications in Automotive Industry
,”
Int. J. Adv. Manuf. Technol.
,
39
(
9–10
), pp.
851
865
.
5.
Jain
,
C.-C.
, and
Koo
,
C.-H.
,
2007
, “
Creep and Corrosion Properties of the Extruded Magnesium Alloy Containing Rare Earth
,”
Mater. Trans.
,
48
(
2
), pp.
265
272
.
6.
Xu
,
T.
,
Yang
,
Y.
,
Peng
,
X.
,
Song
,
J.
, and
Pan
,
F.
,
2019
, “
Overview of Advancement and Development Trend on Magnesium Alloy
,”
J. Magnesium Alloys
,
7
(
3
), pp.
536
544
.
7.
Liang
,
D.
, and
Cowley
,
C.
,
2004
, “
The Twin-Roll Strip Casting of Magnesium
,”
JOM
,
56
(
5
), pp.
26
28
.
8.
Mordike
,
B. L.
, and
Ebert
,
T.
,
2001
, “
Magnesium Properties—Applications—Potential
,”
Mater. Sci. Eng. A
,
302
(
1
), pp.
37
45
.
9.
Janeček
,
M.
,
Popov
,
M.
,
Krieger
,
M. G.
,
Hellmig
,
R. J.
, and
Estrin
,
Y.
,
2007
, “
Mechanical Properties and Microstructure of a Mg Alloy AZ31 Prepared by Equal-Channel Angular Pressing
,”
Mater. Sci. Eng. A
,
462
(
1–2
), pp.
116
120
.
10.
Frazier
,
W. E.
,
2014
, “
Metal Additive Manufacturing: A Review
,”
J. Mater. Eng. Perform.
,
23
(
6
), pp.
1917
1928
.
11.
ISO/ASTM
,
2013
, “Additive Manufacturing—General Principles Terminology (ASTM52900),” Rapid Manuf. Assoc., Volume 10.04, pp.
1
91
.
12.
Bikas
,
H.
,
Stavropoulos
,
P.
, and
Chryssolouris
,
G.
,
2016
, “
Additive Manufacturing Methods and Modeling Approaches: A Critical Review
,”
Int. J. Adv. Manuf. Technol.
,
83
(
1–4
), pp.
389
405
.
13.
Pawlak
,
A.
,
Rosienkiewicz
,
M.
, and
Chlebus
,
E.
,
2017
, “
Design of Experiments Approach in AZ31 Powder Selective Laser Melting Process Optimization
,”
Arch. Civ. Mech. Eng.
,
17
(
1
), pp.
9
18
.
14.
Pawlak
,
A.
, and
Chlebus
,
E.
,
2015
, “
Process Parameter Optimization of Laser Micrometallurgy of AZ31 Alloy
,”
Interdiscip. J. Eng. Sci.
,
3
(
1
), pp.
10
15
.
15.
Graf
,
M.
,
Hälsig
,
A.
,
Höfer
,
K.
,
Awiszus
,
B.
, and
Mayr
,
P.
,
2018
, “
Thermo-Mechanical Modelling of Wire-Arc Additive Manufacturing (WAAM) of Semi-Finished Products
,”
Metals (Basel)
,
8
(
12
), p.
1009
.
16.
Guo
,
J.
,
Zhou
,
Y.
,
Liu
,
C.
,
Wu
,
Q.
,
Chen
,
X.
, and
Lu
,
J.
,
2016
, “
Wire Arc Additive Manufacturing of AZ31 Magnesium Alloy: Grain Refinement by Adjusting Pulse Frequency
,”
Mater. (Basel)
,
9
(
10
), p. 823.
17.
Van Der Stelt
,
A. A.
,
Bor
,
T. C.
,
Geijselaers
,
H. J. M.
,
Akkerman
,
R.
, and
van den Boogaard
,
A. H.
,
2013
, “
Cladding of Advanced Al Alloys Employing Friction Stir Welding
,”
Key Eng. Mater.
,
554–557
, pp.
1014
1021
.
18.
Liu
,
S.
,
Bor
,
T. C.
,
Van der Stelt
,
A. A.
,
Geijselaers
,
H. J. M.
,
Kwakernaak
,
C.
,
Kooijman
,
A. M.
,
Mol
,
J. M. C.
,
Akkerman
,
R.
, and
Van Den Boogaard
,
A. H.
,
2016
, “
Friction Surface Cladding: An Exploratory Study of a New Solid State Cladding Process
,”
J. Mater. Process. Technol.
,
229
, pp.
769
784
.
19.
Phillips
,
B. J.
,
Avery
,
D. Z.
,
Liu
,
T.
,
Rodriguez
,
O. L.
,
Mason
,
C. J. T.
,
Jordon
,
J. B.
,
Brewer
,
L. N.
, and
Allison
,
P. G.
,
2019
, “
Microstructure-Deformation Relationship of Additive Friction Stir-Deposition Al–Mg–Si
,”
Materialia
,
7
, p.
100387
.
20.
Rivera
,
O. G.
,
Allison
,
P. G.
,
Jordon
,
J. B.
,
Rodriguez
,
O. L.
,
Brewer
,
L. N.
,
McClelland
,
Z.
,
Whittington
,
W. R.
, et al
,
2017
, “
Microstructures and Mechanical Behavior of Inconel 625 Fabricated by Solid-State Additive Manufacturing
,”
Mater. Sci. Eng. A
,
694
, pp.
1
9
.
21.
Avery
,
D. Z.
,
Rivera
,
O. G.
,
Mason
,
C. J. T.
,
Phillips
,
B. J.
,
Jordon
,
J. B.
,
Su
,
J.
,
Hardwick
,
N.
, and
Allison
,
P. G.
,
2018
, “
Fatigue Behavior of Solid-State Additive Manufactured Inconel 625
,”
JOM
,
70
(
11
), pp.
2475
2484
.
22.
Van Der Stelt
,
A. A.
,
Bor
,
T. C.
,
Geijselaers
,
H. J. M.
,
Quak
,
W.
,
Akkerman
,
R.
, and
Huétink
,
J.
,
2011
, “
Comparison of ALE Finite Element Method and Adaptive Smoothed Finite Element Method for the Numerical Simulation of Friction Stir Welding
,”
The 14th International ESAFORM Conference on Material Forming
, pp.
1290
1295
.
23.
Avery
,
D. Z.
,
Phillips
,
B. J.
,
Mason
,
C. J. T.
,
Palermo
,
M.
,
Williams
,
M. B.
,
Cleek
,
C.
,
Rodriguez
,
O. L.
,
Allison
,
P. G.
, and
Jordon
,
J. B.
,
2020
, “
Influence of Grain Refinement and Microstructure on Fatigue Behavior for Solid-State Additively Manufactured Al-Zn-Mg-Cu Alloy
,”
Metall. Mater. Trans. A
,
51
(
6
), pp.
2778
2795
.
24.
Rivera
,
O. G.
,
Allison
,
P. G.
,
Brewer
,
L. N.
,
Rodriguez
,
O. L.
,
Jordon
,
J. B.
,
Liu
,
T.
,
Whittington
,
W. R.
, et al
,
2018
, “
Influence of Texture and Grain Refinement on the Mechanical Behavior of AA2219 Fabricated by High Shear Solid State Material Deposition
,”
Mater. Sci. Eng. A
,
724
, pp.
547
558
.
25.
Yoder
,
J. K.
,
Griffiths
,
R. J.
, and
Yu
,
H. Z.
,
2021
, “
Deformation-Based Additive Manufacturing of 7075 Aluminum With Wrought-Like Mechanical Properties
,”
Mater. Des.
,
198
, p.
109288
.
26.
Anderson-Wedge
,
K.
,
Avery
,
D. Z.
,
Daniewicz
,
S. R.
,
Sowards
,
J. W.
,
Allison
,
P. G.
,
Jordon
,
J. B.
, and
Amaro
,
R. L.
,
2021
, “
Characterization of the Fatigue Behavior of Additive Friction Stir-Deposition AA2219
,”
Int. J. Fatigue
,
142
, p.
105951
.
27.
Griffiths
,
R. J.
,
Garcia
,
D.
,
Song
,
J.
,
Vasudevan
,
V. K.
,
Steiner
,
M. A.
,
Cai
,
W.
, and
Hang
,
Z. Y.
,
2021
, “
Solid-State Additive Manufacturing of Aluminum and Copper Using Additive Friction Stir Deposition: Process-Microstructure Linkages
,”
Materialia
,
15
, p.
100967
.
28.
Manakari
,
V.
,
Parande
,
G.
, and
Gupta
,
M.
,
2017
, “
Selective Laser Melting of Magnesium and Magnesium Alloy Powders: A Review
,”
Metals
,
7
(
1
), p.
2
.
29.
Mason
,
C. J. T.
,
Rodriguez
,
R. I.
,
Avery
,
D. Z.
,
Phillips
,
B. J.
,
Bernarding
,
B. P.
,
Williams
,
M. B.
,
Cobbs
,
S. D.
,
Jordon
,
J. B.
, and
Allison
,
P. G.
,
2021
, “
Process-Structure-Property Relations for as-Deposited Solid-State Additively Manufactured High-Strength Aluminum Alloy
,”
Addit. Manuf.
,
40
, p.
101879
.
30.
ASTM E8
,
2010
, “
ASTM E8/E8M Standard Test Methods for Tension Testing of Metallic Materials 1
,”
Annu. B. ASTM Stand.
,
4
(
C
), pp.
1
27
.
31.
Allison
,
P. G.
,
Hammi
,
Y.
,
Jordon
,
J. B.
, and
Horstemeyer
,
M. F.
,
2013
, “
Modelling and Experimental Study of Fatigue of Powder Metal Steel (FC-0205)
,”
Powder Metall.
,
56
(
5
), pp.
388
396
.
32.
Allison
,
P. G.
,
Horstemeyer
,
M. F.
,
Hammi
,
Y.
,
Brown
,
H. R.
,
Tucker
,
M. T.
, and
Hwang
,
Y.-K.
,
2011
, “
Microstructure–Property Relations of a Steel Powder Metal Under Varying Temperatures, Strain Rates, and Stress States
,”
Mater. Sci. Eng. A
,
529
, pp.
335
344
.
33.
Allison
,
P. G.
,
Grewal
,
H.
,
Hammi
,
Y.
,
Brown
,
H. R.
,
Whittington
,
W. R.
, and
Horstemeyer
,
M. F.
,
2013
, “
Plasticity and Fracture Modeling/Experimental Study of a Porous Metal Under Various Strain Rates, Temperatures, and Stress States
,”
ASME J. Eng. Mater. Technol.
,
135
(
4
), p. 041008.
34.
Yi
,
S.
,
Brokmeier
,
H. G.
, and
Letzig
,
D.
,
2010
, “
Microstructural Evolution During the Annealing of an Extruded AZ31 Magnesium Alloy
,”
J. Alloys Compd.
,
506
(
1
), pp.
364
371
.
35.
Darras
,
B. M.
,
Khraisheh
,
M. K.
,
Abu-Farha
,
F. K.
, and
Omar
,
M. A.
,
2007
, “
Friction Stir Processing of Commercial AZ31 Magnesium Alloy
,”
J. Mater. Process. Technol.
,
191
(
1–3
), pp.
77
81
.
36.
Darras
,
B.
, and
Kishta
,
E.
,
2013
, “
Submerged Friction Stir Processing of AZ31 Magnesium Alloy
,”
Mater. Des.
,
47
, pp.
133
137
.
37.
Doherty
,
R. D.
,
Hughes
,
D. A.
,
Humphreys
,
F. J.
,
Jonas
,
J. J.
,
Jensen
,
D. J.
,
Kassner
,
M. E.
,
King
,
W. E.
,
McNelley
,
T. R.
,
McQueen
,
H. J.
, and
Rollett
,
A. D.
,
1997
, “
Current Issues in Recrystallization: A Review
,”
Mater. Sci. Eng. A
,
238
(
2
), pp.
219
274
.
38.
Rodriguez
,
R. I.
,
Jordon
,
J. B.
,
Rao
,
H. M.
,
Badarinarayan
,
H.
,
Yuan
,
W.
,
Kadiri
,
H. E.
, and
Allison
,
P. G.
,
2014
, “
Microstructure, Texture, and Mechanical Properties of Friction Stir Spot Welded Rare-Earth Containing ZEK100 Magnesium Alloy Sheets
,”
Mater. Sci. Eng. A
,
618
, pp.
637
644
.
39.
Yuan
,
W.
,
Mishra
,
R. S.
,
Carlson
,
B.
,
Verma
,
R.
, and
Mishra
,
R. K.
,
2012
, “
Material Flow and Microstructural Evolution During Friction Stir Spot Welding of AZ31 Magnesium Alloy
,”
Mater. Sci. Eng. A
,
543
, pp.
200
209
.
40.
Woo
,
W.
,
Choo
,
H.
,
Brown
,
D. W.
,
Liaw
,
P. K.
, and
Feng
,
Z.
,
2006
, “
Texture Variation and its Influence on the Tensile Behavior of a Friction-Stir Processed Magnesium Alloy
,”
Scr. Mater.
,
54
(
11
), pp.
1859
1864
.
41.
Suhuddin
,
U. F. H. R.
,
Mironov
,
S.
,
Sato
,
Y. S.
,
Kokawa
,
H.
, and
Lee
,
C. W.
,
2009
, “
Grain Structure Evolution During Friction-Stir Welding of AZ31 Magnesium Alloy
,”
Acta Mater.
,
57
(
18
), pp.
5406
5418
.
42.
Yuan
,
W.
,
Mishra
,
R. S.
,
Carlson
,
B.
,
Mishra
,
R. K.
,
Verma
,
R.
, and
Kubic
,
R.
,
2011
, “
Effect of Texture on the Mechanical Behavior of Ultrafine Grained Magnesium Alloy
,”
Scr. Mater.
,
64
(
6
), pp.
580
583
.
43.
Wang
,
W.
,
Deng
,
D.
,
Mao
,
Z.
,
Tong
,
Y.
, and
Ran
,
Y.
,
2017
, “
Influence of Tool Rotation Rates on Temperature Profiles and Mechanical Properties of Friction Stir Welded AZ31 Magnesium Alloy
,”
Int. J. Adv. Manuf. Technol.
,
88
(
5–8
), pp.
2191
2200
.
44.
Lugo
,
M.
,
Jordon
,
J. B.
,
Solanki
,
K. N.
,
Hector,
Jr.,
L. G.
,
Bernard
,
J. D.
,
Luo
,
A. A.
, and
Horstemeyer
,
M. F.
,
2013
, “
Role of Different Material Processing Methods on the Fatigue Behavior of an AZ31 Magnesium Alloy
,”
Int. J. Fatigue
,
52
, pp.
131
143
.
45.
Wlodarski
,
S.
,
Avery
,
D. Z.
,
White
,
B. C.
,
Mason
,
C. J. T.
,
Cleek
,
C.
,
Williams
,
M. B.
,
Allison
,
P. G.
, and
Jordon
,
J. B.
,
2021
, “
Evaluation of Grain Refinement and Mechanical Properties of Additive Friction Stir Layer Welding of AZ31 Magnesium Alloy
,”
J. Mater. Eng. Perform.
,
30
(
2
), pp.
964
972
.
46.
del Valle
,
J. A.
,
Carreño
,
F.
, and
Ruano
,
O. A.
,
2006
, “
Influence of Texture and Grain Size on Work Hardening and Ductility in Magnesium-Based Alloys Processed by ECAP and Rolling
,”
Acta Mater.
,
54
(
16
), pp.
4247
4259
.
47.
Myhr
,
O. R.
,
Grong
,
Ø
, and
Pedersen
,
K. O.
,
2010
, “
A Combined Precipitation, Yield Strength, and Work Hardening Model for Al-Mg-Si Alloys
,”
Metall. Mater. Trans. A Phys. Metall. Mater. Sci.
,
41
(
9
), pp.
2276
2289
.
48.
Wang
,
W.
,
Han
,
P.
,
Peng
,
P.
,
Zhang
,
T.
,
Liu
,
Q.
,
Yuan
,
S. N.
,
Huang
,
L. Y.
,
Yu
,
H. L.
,
Qiao
,
K.
, and
Wang
,
K. S.
,
2020
, “
Friction Stir Processing of Magnesium Alloys: A Review
,”
Acta Metall. Sin. (English Lett.)
,
33
(
1
), pp.
43
57
.
49.
Liu
,
F.
,
Ji
,
Y.
,
Sun
,
Z.
,
Liu
,
J.
,
Bai
,
Y.
, and
Shen
,
Z.
,
2020
, “
Enhancing Corrosion Resistance and Mechanical Properties of AZ31 Magnesium Alloy by Friction Stir Processing With the Same Speed Ratio
,”
J. Alloys Compd.
,
829
, p.
154452
.
50.
Chen
,
X.
,
Dai
,
Q.
,
Li
,
X.
,
Lu
,
Y.
, and
Zhang
,
Y.
,
2018
, “
Microstructure and Tensile Properties of Friction Stir Processed Mg-Sn-Zn Alloy
,”
Mater. (Basel)
,
11
(
4
), p.
645
.
You do not currently have access to this content.