Abstract

Laser powder bed fusion (LPBF) was utilized to create a series of aluminum alloy (i.e., AlSi10Mg) 5 mm-diameter support pillars with a fixed height of 5 mm containing varying filet angles and build orientations (i.e., 0 deg, 10 deg, 20 deg, 30 deg, 40 deg, 50 deg, and 60 deg from the normal surface) to determine surface roughness and water wettability effects. From experiments, anisotropic wetting was observed due in part to the surface heterogeneity created by the LPBF process. The powder-sourced AlSi10Mg alloy, typically hydrophobic, exhibited primarily hydrophilic behavior for build angles of 0 deg and 60 deg, a mix of hydrophobic and hydrophilic behavior at build angles of 10 deg and 20 deg, and hydrophobic behavior at 30 deg, 40 deg, and 50 deg build angles. Measured surface roughness, Ra, ranged from 5 to 36 µm and varied based on location. 3D-topography maps were generated, and arithmetic mean heights, Sa, of 15.52–21.71 µm were observed; the anisotropy of roughness altered the wetting behavior, thereby prompting some hydrophilic behavior. Build angles of 30 deg and 40 deg provided for the smoothest surfaces. A significantly rougher surface was found for the 50 deg build angle. This abnormally high roughness is attributed to the melt pool contact angle having maximal capillarity with the surrounding powder bed. In this study, the critical melt pool contact angle was near equal to the build angle, suggesting that a critical build angle exists, which gives rise to pronounced melt pool wetting behavior and increased surface roughness due to enhanced wicking followed by solidification.

References

1.
Ma
,
H.
,
2016
,
Oscillating Heat Pipes
,
Springer Science + Business Media
,
New York
, p.
389
.
2.
Jafari
,
D.
,
Wits
,
W. W.
, and
Geurts
,
B. J.
,
2020
, “
Phase Change Heat Transfer Characteristics of an Additively Manufactured Wick for Heat Pipe Applications
,”
Appl. Therm. Eng.
,
168
, p.
114890
.
3.
Thompson
,
S.
, and
Ma
,
H.
,
2015
, “
Recent Advances in Two-Phase Thermal Ground Planes
,”
Annu. Rev. Heat Transfer
,
18
, pp.
101
153
.
4.
Zhao
,
C.
,
Fezzaa
,
K.
,
Cunningham
,
R. W.
,
Wen
,
H.
,
De Carlo
,
F.
,
Chen
,
L.
,
Rollett
,
A. D.
, and
Sun
,
T.
,
2017
, “
Real-Time Monitoring of Laser Powder Bed Fusion Process Using High-Speed X-Ray Imaging and Diffraction
,”
Sci. Rep.
,
7
(
1
), p.
3602
.
5.
Bailey
,
C. M.
,
Weeks
,
C.
, and
Thompson
,
S. M.
,
2021
, “
Design and Performance of a Novel AlSi10Mg Vapor Chamber Fabricated via Laser Powder Bed Fusion
,”
Solid Freeform Fabrication Conference
,
Aug. 2–4
, Paper No. 63599: Virtual Event.
6.
ASTM Standard 52900:E
,
2015
, “
Standard Terminology for Additive Manufacturing-General Principles-Terminology
,” ASTM International, West Conshohocken, PA.
7.
Gibson
,
I.
,
Rosen
,
D.
, and
Stucker
,
B.
,
2016
,
Additive Manufacturing Technologies: 3d Printing, Rapid Prototyping, and Direct Digital Manufacturing
,
Springer Verlag
,
Berlin/Heidelberg, Germany
.
8.
Ponticelli
,
G. S.
,
Giannini
,
O.
,
Guarino
,
S.
, and
Horn
,
M.
,
2020
, “
An Optimal Fuzzy Decision-Making Approach for Laser Powder Bed Fusion of AlSi10Mg Alloy
,”
J. Manuf. Process.
,
58
, pp.
712
723
.
9.
Tian
,
Q.
,
Guo
,
S.
,
Melder
,
E.
,
Bian
,
L.
, and
Guo
,
W.
,
2020
, “
Deep Learning-Based Data Fusion Method for In Situ Porosity Detection in Laser-Based Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
143
(
4
), p.
041011
.
10.
Ramesh Sagar
,
V.
,
Lorin
,
S.
,
Wärmefjord
,
K.
, and
Söderberg
,
R.
,
2021
, “
A Robust Design Perspective on Factors Influencing Geometric Quality in Metal Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
143
(
7
), p.
071011
.
11.
du Plessis
,
A.
, and
Beretta
,
S.
,
2020
, “
Killer Notches: The Effect of As-Built Surface Roughness on Fatigue Failure in AlSi10Mg Produced by Laser Powder Bed Fusion
,”
Addit. Manuf.
,
35
, p.
101424
.
12.
Liu
,
W.
,
Peng
,
Y.
,
Luo
,
T.
,
Luo
,
Y.
, and
Huang
,
K.
,
2016
, “
The Performance of the Vapor Chamber Based on the Plant Leaf
,”
Int. J. Heat Mass Transfer
,
98
, pp.
746
757
.
13.
Esarte
,
J.
,
Blanco
,
J.
,
Bernardini
,
A.
, and
San-José
,
J.
,
2017
, “
Optimizing the Design of a Two-Phase Cooling System Loop Heat Pipe: Wick Manufacturing With the 3D Selective Laser Melting Printing Technique and Prototype Testing
,”
Appl. Therm. Eng.
,
111
, pp.
407
419
.
14.
Jafari
,
D.
,
Wits
,
W. W.
, and
Geurts
,
B. J.
,
2017
, “
An Investigation of Porous Structure Characteristics of Heat Pipes Made by Additive Manufacturing
,”
23rd International Workshop on Thermal Investigations of ICs and Systems (THERMINIC)
,
Amsterdam, The Netherlands
,
Sept. 27–29
, pp.
1
7
.
15.
Jafari
,
D.
,
Wits
,
W. W.
, and
Geurts
,
B. J.
,
2018
, “
Metal 3D-Printed Wick Structures for Heat Pipe Application: Capillary Performance Analysis
,”
Appl. Therm. Eng.
,
143
, pp.
403
414
.
16.
Brooks
,
H.
, and
Brigden
,
K.
,
2016
, “
Design of Conformal Cooling Layers With Self-Supporting Lattices for Additively Manufactured Tooling
,”
Addit. Manuf.
,
11
, pp.
16
22
.
17.
Thompson
,
S. M.
,
Aspin
,
Z. S.
,
Shamsaei
,
N.
,
Elwany
,
A.
, and
Bian
,
L.
,
2015
, “
Additive Manufacturing of Heat Exchangers: A Case Study on a Multi-Layered Ti–6Al–4 V Oscillating Heat Pipe
,”
Addit. Manuf.
,
8
, pp.
163
174
.
18.
Du
,
Y.
, and
Tong
,
P.
,
2000
, “
Turbulent Thermal Convection in a Cell With Ordered Rough Boundaries
,”
J. Fluid Mech.
,
407
, pp.
57
84
.
19.
Demsky
,
S. M.
, and
Ma
,
H. B.
,
2004
, “
Thin Film Evaporation on a Curved Surface
,”
Microscale Thermophys. Eng.
,
8
(
3
), pp.
285
299
.
20.
Lee
,
C. Y.
, and
In
,
W. K.
,
2014
, “
Prediction of Water Droplet Evaporation on Zircaloy Surface
,”
J. Nucl. Sci. Technol.
,
51
(
4
), pp.
448
456
.
21.
Fathi
,
P.
,
Mohammadi
,
M.
, and
Nasiri
,
A.
,
2020
, “
Low Surface Roughness Additively Manufactured AlSi10Mg: The Impacts on Corrosion and Water Repellency Properties
,”
TMS 2020 149th Annual Meeting & Exhibition Supplemental Proceedings
,
San Diego, CA
,
Feb. 23–27
, pp.
309
320
.
22.
Chen
,
X.
, and
Derby
,
M. M.
,
2016
, “
Combined Visualization and Heat Transfer Measurements for Steam Flow Condensation in Hydrophilic and Hydrophobic Mini-Gaps
,”
ASME J. Heat Transfer-Trans. ASME
,
138
(
9
), p.
091503
.
23.
Fil
,
B. E.
,
Kini
,
G.
, and
Garimella
,
S.
,
2020
, “
A Review of Dropwise Condensation: Theory, Modeling, Experiments, and Applications
,”
Int. J. Heat Mass Transfer
,
160
, p.
120172
.
24.
Attinger
,
D.
,
Frankiewicz
,
C.
,
Betz
,
A.
,
Schutzius
,
T.
,
Ganguly
,
R.
,
Das
,
A.
,
Chang-Jin
,
K.
, and
Megaridis
,
C.
,
2014
, “
Surface Engineering for Phase Change Heat Transfer: A Review
,”
MRS Energy Sustainability
,
1
(
1
), p.
E4
.
25.
Snyder
,
J. C.
, and
Thole
,
K. A.
,
2020
, “
Understanding Laser Powder Bed Fusion Surface Roughness
,”
ASME J. Manuf. Sci. Eng.
,
142
(
7
), p.
071003
.
26.
Montazeri
,
M.
, and
Rao
,
P.
,
2018
, “
Sensor-Based Build Condition Monitoring in Laser Powder Bed Fusion Additive Manufacturing Process Using a Spectral Graph Theoretic Approach
,”
ASME J. Manuf. Sci. Eng.
,
140
(
9
), p.
091002
.
27.
Slegers
,
S.
,
Linzas
,
M.
,
Drijkoningen
,
J.
,
D’Haen
,
J.
,
Reddy
,
N.
, and
Deferme
,
W.
,
2017
, “
Surface Roughness Reduction of Additive Manufactured Products by Applying a Functional Coating Using Ultrasonic Spray Coating
,”
Coatings
,
7
(
12
), p.
208
.
28.
Yang
,
T.
,
Liu
,
T.
,
Liao
,
W.
,
MacDonald
,
E.
,
Wei
,
H.
,
Chen
,
X.
, and
Jiang
,
L.
,
2019
, “
The Influence of Process Parameters on Vertical Surface Roughness of the AlSi10Mg Parts Fabricated by Selective Laser Melting
,”
J. Mater. Process. Technol.
,
266
, pp.
26
36
.
29.
Yu
,
W.
,
Sing
,
S. L.
,
Chua
,
C. K.
, and
Tian
,
X.
,
2019
, “
Influence of Re-Melting on Surface Roughness and Porosity of AlSi10Mg Parts Fabricated by Selective Laser Melting
,”
J. Alloys Compd.
,
792
, pp.
574
581
.
30.
Kuisat
,
F.
,
Ränke
,
F.
,
Lasagni
,
F.
, and
Lasagni
,
A. F.
,
2021
, “
Simultaneous Micro-Structuring and Surface Smoothing of Additive Manufactured Parts Using DLIP Technique and Its Influence on the Wetting Behaviour
,”
Materials (Basel, Switzerland)
,
14
(
10
), p.
2563
.
31.
Davoudinejad
,
A.
,
Cai
,
Y.
,
Pedersen
,
D. B.
,
Luo
,
X.
, and
Tosello
,
G.
,
2019
, “
Fabrication of Micro-Structured Surfaces by Additive Manufacturing, With Simulation of Dynamic Contact Angle
,”
Mater. Des.
,
176
, p.
107839
.
32.
Gogolewski
,
D.
,
Bartkowiak
,
T.
,
Kozior
,
T.
, and
Zmarzły
,
P.
,
2021
, “
Multiscale Analysis of Surface Texture Quality of Models Manufactured by Laser Powder-Bed Fusion Technology and Machining From 316L Steel
,”
Materials
,
14
(
11
), p.
2794
.
33.
Leis
,
A.
,
Weber
,
R.
, and
Graf
,
T.
,
2021
, “
Process Window for Highly Efficient Laser-Based Powder Bed Fusion of AlSi10Mg With Reduced Pore Formation
,”
Materials (Basel)
,
14
(
18
),
p.
5255
.
34.
Li
,
B.-Q.
,
Li
,
Z.
,
Bai
,
P.
,
Liu
,
B.
, and
Kuai
,
Z.
,
2018
, “
Research on Surface Roughness of AlSi10Mg Parts Fabricated by Laser Powder Bed Fusion
,”
Metals
,
8
(
7
), p.
524
.
35.
Dong
,
Z.
,
Liu
,
Y.
,
Li
,
W.
, and
Liang
,
J.
,
2019
, “
Orientation Dependency for Microstructure, Geometric Accuracy and Mechanical Properties of Selective Laser Melting AlSi10Mg Lattices
,”
J. Alloys Compd.
,
791
, pp.
490
500
.
36.
Hofele
,
M.
,
Roth
,
A.
,
Schanz
,
J.
,
Harrison
,
D.
,
De Silva
,
A.
, and
Riegel
,
H.
,
2021
, “
Laser Polishing of Laser Powder Bed Fusion AlSi10Mg Parts—Influence of Initial Surface Roughness on Achievable Surface Quality
,”
Mater. Sci. Appl.
,
12
(
1
), pp.
15
41
.
37.
Gouveia
,
R. M.
,
Silva
,
F. J. G.
,
Atzeni
,
E.
,
Sormaz
,
D.
,
Alves
,
J. L.
, and
Pereira
,
A. B.
,
2020
, “
Effect of Scan Strategies and Use of Support Structures on Surface Quality and Hardness of L-PBF AlSi10Mg Parts
,”
Materials
,
13
(
10
), p.
2248
.
38.
Olakanmi
,
E. O.
,
Cochrane
,
R. F.
, and
Dalgarno
,
K. W.
,
2015
, “
A Review on Selective Laser Sintering/Melting (SLS/SLM) of Aluminum Alloy Powders: Processing, Microstructure, and Properties
,”
Prog. Mater. Sci.
,
74
, pp.
401
477
.
39.
Hung
,
Y.-H.
,
Kang
,
S.-W.
, and
Tsai
,
W.-C.
,
2010
, “
Strain Analysis of Vapor Chamber Heat Spreaders
,”
J. Mar. Sci. Technol.
,
18
(
2
), pp.
277
283
.
40.
Wang
,
L.Z.
,
Wang
,
S.
, and
Wu
,
J.J.
,
2017
, “
Experimental Investigation on Densification Behavior and Surface Roughness of AlSi10Mg Powders Produced by Selective Laser Melting
,”
Opt. Laser Tech.
,
96
, pp.
88
96
.
41.
Carey
,
V. P.
,
2007
,
Liquid-Vapor Phase-Change Phenomena
, 2nd ed.,
CRC Press
,
Boca Raton, FL
.
42.
Dubois
,
J. M.
,
Fournée
,
V.
,
Thiel
,
P. A.
, and
Belin-Ferré
,
E.
,
2008
, “
Measurements of Contact Angles of Water on Al-Based Intermetallic Surfaces
,”
J. Phys.: Condens. Matter
,
20
(
31
), p.
314011
.
43.
Boschetto
,
A.
,
Bottini
,
L.
, and
Veniali
,
F.
,
2017
, “
Roughness Modeling of AlSi10Mg Parts Fabricated by Selective Laser Melting
,”
J. Mater. Process. Technol.
,
241
, pp.
154
163
.
44.
Miljkovic
,
N.
, and
Wang
,
E. N.
,
2013
, “
Condensation Heat Transfer on Superhydrophobic Surfaces
,”
MRS Bull.
,
38
(
5
), pp.
397
406
.
45.
Boreyko
,
J. B.
,
Baker
,
C. H.
,
Poley
,
C. R.
, and
Chen
,
C. H.
,
2011
, “
Wetting and Dewetting Transitions on Hierarchical Superhydrophobic Surfaces
,”
Langmuir
,
27
(
12
), pp.
7502
7509
.
46.
Sommers
,
A.
, and
Jacobi
,
A. M.
,
2008
, “
Calculating the Volume of Water Droplets on Topographically-Modified, Micro-Grooved Aluminum Surfaces
.”
47.
Bell
,
M. S.
,
Fichthorn
,
K. A.
, and
Borhan
,
A.
,
2016
, “
Effect of Gravity on the Configuration of Droplets on Two-Dimensional Physically Patterned Surfaces
,”
Langmuir
,
32
(
16
), pp.
3858
3866
.
48.
Wenzel
,
R. N.
,
1936
, “
Resistance of Solid Surfaces to Wetting by Water
,”
Ind. Eng. Chem.
,
28
(
8
), pp.
988
994
.
49.
Plawsky
,
J. L.
,
Ojha
,
M.
,
Chatterjee
,
A.
, and
Wayner Jr
,
P. C.
,
2008
, “
Review of the Effects of Surface Topography, Surface Chemistry, and Fluid Physics on Evaporation at the Contact Line
,”
Chem. Eng. Commun.
,
196
(
5
), pp.
658
696
.
50.
Huang
,
X.
, and
Gates
,
I.
,
2020
, “
Apparent Contact Angle Around the Periphery of a Liquid Drop on Roughened Surfaces
,”
Sci. Rep.
,
10
(
1
), p.
8220
.
51.
Hancock
,
M. J.
,
Sekeroglu
,
K.
, and
Demirel
,
M. C.
,
2012
, “
Bioinspired Directional Surfaces for Adhesion, Wetting, and Transport
,”
Adv. Funct. Mater.
,
22
(
11
), pp.
2223
2234
.
52.
Wang
,
Y.
,
Jian
,
M.
,
Liu
,
H.
, and
Zhang
,
X.
,
2018
, “
Anisotropic Wetting of Droplets on Stripe-Patterned Chemically Heterogeneous Surfaces: Effect of Length Ratio and Deposition Position
,”
Langmuir
,
35
(
12
), pp.
4387
4396
.
53.
Vrancken
,
R. J.
,
Blow
,
M. L.
,
Kusumaatmaja
,
H.
,
Hermans
,
K.
,
Prenen
,
A. M.
,
Bastiaansen
,
C. W.
,
Broer
,
D. J.
, and
Yeomans
,
J. M.
,
2013
, “
Anisotropic Wetting and De-Wetting of Drops on Substrates Patterned With Polygonal Posts
,”
Soft Matter
,
9
(
3
), pp.
674
683
.
54.
Belaud
,
V.
,
Valette
,
S.
,
Stremsdoerfer
,
G.
,
Bigerelle
,
M.
, and
Benayoun
,
S.
,
2015
, “
Wettability Versus Roughness: Multi-Scales Approach
,”
Tribol. Int.
,
82
, pp.
343
349
.
55.
Zhou
,
J.
,
Han
,
X.
,
Li
,
H.
,
Liu
,
S.
, and
Yi
,
J.
,
2021
, “
Investigation of Layer-by-Layer Laser Remelting to Improve Surface Quality, Microstructure, and Mechanical Properties of Laser Powder Bed Fused AlSi10Mg Alloy
,”
Mater. Des.
,
210
, p.
110092
.
56.
Kim
,
T.-i.
, and
Suh
,
K. Y.
, “
Unidirectional Wetting and Spreading on Stooped Polymer Nanohairs
,”
Soft Matter
,
5
(
21
), pp.
4131
4135
.
57.
Hovig
,
E. W.
,
Azar
,
A. S.
,
Sunding
,
M. F.
,
Andreassen
,
E.
, and
Sørby
,
K.
,
2019
, “
High Cycle Fatigue Life Estimation of Materials Processed by Laser Powder Bed Fusion
,”
Fatigue Fract. Eng. Mater. Struct.
,
42
(
7
), pp.
1454
1466
.
58.
Karlsson
,
J.
,
Piiroinen
,
A.
,
Korpela
,
M.
, and
Salminen
,
A.
,
2021
, “
Surface Roughness Variance on Different Levels of Surface Inclination of Powder bed Fused Tool Steel 1.2709
,”
IOP Conference Series: Materials Science and Engineering
,
IOP Publishing
, p.
012020
.
59.
Ullah
,
R.
,
Akmal
,
J. S.
,
Laakso
,
S. V.
, and
Niemi
,
E.
,
2020
, “
Anisotropy of Additively Manufactured AlSi10Mg: Threads and Surface Integrity
,”
Int. J. Adv. Manuf. Technol.
,
107
(
9–10
), pp.
3645
3662
.
60.
Raux
,
P. S.
,
Cockenpot
,
H.
,
Ramaioli
,
M.
,
Quéré
,
D.
, and
Clanet
,
C.
,
2013
, “
Wicking in a Powder
,”
Langmuir
,
29
(
11
), pp.
3636
3644
.
61.
Shirtcliffe
,
N. J.
,
McHale
,
G.
,
Newton
,
M. I.
,
Pyatt
,
F. B.
, and
Doerr
,
S. H.
,
2006
, “
Critical Conditions for the Wetting of Soils
,”
Appl. Phys. Lett.
,
89
(
9
), p.
094101
.
62.
Biffi
,
C. A.
,
Bassani
,
P.
,
Fiocchi
,
J.
,
Giuranno
,
D.
,
Novakovic
,
R.
,
Tuissi
,
A.
, and
Ricci
,
E.
,
2021
, “
Investigation of High Temperature Behavior of AlSi10Mg Produced by Selective Laser Melting
,”
Mater. Chem. Phys.
,
259
, p.
123975
.
You do not currently have access to this content.