Abstract

G01 blocks are the widespread format of toolpath in computer numerical controlled (CNC) machining. For achieving smooth motion and eliminating the geometrical discontinuity at the block transitions, various local corner smoothing methods have been developed. However, in these methods, the loss of featured information of parts is inevitable. Focused on this topic, this article proposes a new analytical G2 continuous corner smoothing method with G01 shape preserving for five-axis linear toolpath by locally inserting specially designed B-splines into the corners of consecutive segments. First, by analyzing the condition of G01 shape preserving, the configuration expression of control points for B-splines is yielded for passing through G01 point. On this basis, the tool tip position is smoothed by symmetrical B-splines with minimum curvature in the workpiece coordinate system (WCS). Then, another asymmetrical B-splines is used to smooth tool orientation in the machine coordinate system (MCS). After that, the satisfaction conditions of parametric synchronization between tool tip position and tool orientation are mathematically derived at junctions, while the corresponding maximum smoothing errors are also constrained in WCS. Compared with the existing methods, not only the tool tip points and orientation vectors specified in original G01 blocks are preserved but also the optimal control points considering the curvature of smooth splines can be obtained analytically. Finally, simulations and experiments are performed to validate the effectiveness of the developed method.

References

1.
Sencer
,
B.
,
Altintas
,
Y.
, and
Croft
,
E.
,
2008
, “
Feed Optimization for Five-Axis CNC Machine Tools With Drive Constraints
,”
Int. J. Mach. Tools Manuf.
,
48
(
7–8
), pp.
733
745
.
2.
Chen
,
M.
, and
Sun
,
Y.
,
2019
, “
Contour Error-Bounded Parametric Interpolator With Minimum Feedrate Fluctuation for Five-Axis CNC Machine Tools
,”
Int. J. Adv. Manuf. Technol.
,
103
(
1–4
), pp.
567
584
.
3.
Pigel
,
L.
, and
Tiller
,
W.
,
1995
,
The NURBS Book
,
Springer
,
Berlin
.
4.
Sun
,
Y.
,
Xu
,
J.
,
Jin
,
C.
, and
Guo
,
D.
,
2016
, “
Smooth Tool Path Generation for 5-Axis Machining of Triangular Mesh Surface With Nonzero Genus
,”
Comput. Aided Des.
,
79
, pp.
60
74
.
5.
Wu
,
M.
,
Mei
,
J.
,
Zhao
,
Y.
, and
Niu
,
W.
,
2020
, “
Vibration Reduction of Delta Robot Based on Trajectory Planning
,”
Mech. Mach. Theory
,
153
, p.
104004
.
6.
Sun
,
Y.
,
Jia
,
J.
,
Xu
,
J.
,
Chen
,
M.
, and
Niu
,
J.
,
2021
, “
Path, Feedrate and Trajectory Planning for Free-Form Surface Machining: A State-of-the-Art Review
,”
Chin. J. Aeronaut.
7.
Chen
,
N.
, and
Frank
,
M. C.
,
2021
, “
Design for Manufacturing: Geometric Manufacturability Evaluation for Five-Axis Milling
,”
ASME J. Manuf. Sci. Eng.
,
143
(
8
), p.
081007
.
8.
Chen
,
M.
,
Sun
,
Y.
, and
Xu
,
J.
,
2020
, “
A New Analytical Path-Reshaping Model and Solution Algorithm for Contour Error Pre-Compensation in Multi-axis Computer Numerical Control Machining
,”
ASME J. Manuf. Sci. Eng.
,
142
(
6
), p.
061006
.
9.
Tsai
,
M. C.
, and
Chung
,
C. W.
,
2003
, “
A Real-Time Predictor–Corrector Interpolator for CNC Machining
,”
ASME J. Manuf. Sci. Eng.
,
125
(
3
), pp.
449
460
.
10.
Chen
,
Z. C.
, and
Khan
,
M. A.
,
2012
, “
Piecewise B-Spline Tool Paths With the Arc-Length Parameter and Their Application on High Feed, Accurate CNC Milling of Free-Form Profiles
,”
ASME J. Manuf. Sci. Eng.
,
134
(
3
), p.
031007
.
11.
Yang
,
Z.
,
Shen
,
L. Y.
,
Yuan
,
C. M.
, and
Gao
,
X. S.
,
2015
, “
Curve Fitting and Optimal Interpolation for CNC Machining Under Confined Error Using Quadratic B-Splines
,”
Comput. Aided Des.
,
66
, pp.
62
72
.
12.
Erkorkmaz
,
K.
,
2015
, “
Efficient Fitting of the Feed Correction Polynomial for Real-Time Spline Interpolation
,”
ASME J. Manuf. Sci. Eng.
,
137
(
4
), p.
044501
.
13.
Tajima
,
S.
, and
Sencer
,
B.
,
2017
, “
Global Tool-Path Smoothing for CNC Machine Tools With Uninterrupted Acceleration
,”
Int. J. Mach. Tools Manuf.
,
121
, pp.
81
95
.
14.
Bi
,
Q. Z.
,
Huang
,
J.
,
Lu
,
Y. A.
,
Zhu
,
L. M.
, and
Ding
,
H.
,
2019
, “
A General, Fast and Robust B-Spline Fitting Scheme for Micro-Line Tool Path Under Chord Error Constraint
,”
Sci. China Technol. Sci.
,
62
(
2
), pp.
321
332
.
15.
Du
,
X.
,
Huang
,
J.
,
Zhu
,
L. M.
, and
Ding
,
H.
,
2020
, “
An Error-Bounded B-Spline Curve Approximation Scheme Using Dominant Points for CNC Interpolation of Micro-Line Toolpath
,”
Robot. Comput. Integr. Manuf.
,
64
, p.
101930
.
16.
Xie
,
Z.
,
Xie
,
F.
,
Liu
,
X. J.
, and
Wang
,
J.
,
2021
, “
Global G3 Continuity Toolpath Smoothing for a 5-DoF Machining Robot With Parallel Kinematics
,”
Robot. Comput. Integr. Manuf.
,
67
, p.
102018
.
17.
Song
,
D. N.
,
Ma
,
J. W.
,
Zhong
,
Y. G.
, and
Yao
,
J. J.
,
2021
, “
Global Smoothing of Short Line Segment Toolpaths by Control-Point-Assigning-Based Geometric Smoothing and FIR Filtering-Based Motion Smoothing
,”
Mech. Syst. Signal Process.
,
160
, p.
107908
.
18.
Wang
,
X.
,
Liu
,
B.
,
Mei
,
X.
,
Hou
,
D.
,
Li
,
Q.
, and
Sun
,
Z.
,
2021
, “
Global Smoothing for Five-Axis Linear Paths Based on an Adaptive NURBS Interpolation Algorithm
,”
Int. J. Adv. Manuf. Technol.
,
114
(
7–8
), pp.
2407
2420
.
19.
Tulsyan
,
S.
, and
Altintas
,
Y.
,
2015
, “
Local Toolpath Smoothing for Five-Axis Machine Tools
,”
Int. J. Mach. Tools Manuf.
,
96
, pp.
15
26
.
20.
Bi
,
Q.
,
Wang
,
Y.
,
Zhu
,
L.
, and
Ding
,
H.
,
2011
, “
A Practical Continuous-Curvature Bézier Transition Algorithm for High-Speed Machining of Linear Tool Path
,”
International Conference on Intelligent Robotics and Applications
,
Aachen, Germany
,
Dec. 6–8
,
Springer
,
Berlin
, pp.
465
476
.
21.
Shahzadeh
,
A.
,
Khosravi
,
A.
,
Robinette
,
T.
, and
Nahavandi
,
S.
,
2018
, “
Smooth Path Planning Using Biclothoid Fillets for High Speed CNC Machines
,”
Int. J. Mach. Tools Manuf.
,
132
, pp.
36
49
.
22.
Zhao
,
H.
,
Zhu
,
L. M.
, and
Ding
,
H.
,
2013
, “
A Real-Time Look-Ahead Interpolation Methodology With Curvature-Continuous B-Spline Transition Scheme for CNC Machining of Short Line Segments
,”
Int. J. Mach. Tools Manuf.
,
65
, pp.
88
98
.
23.
Sencer
,
B.
,
Ishizaki
,
K.
, and
Shamoto
,
E.
,
2015
, “
A Curvature Optimal Sharp Corner Smoothing Algorithm for High-Speed Feed Motion Generation of NC Systems Along Linear Tool Paths
,”
Int. J. Adv. Manuf. Technol.
,
76
(
9–12
), pp.
1977
1992
.
24.
Huang
,
X.
,
Zhao
,
F.
,
Tao
,
T.
, and
Mei
,
X.
,
2021
, “
A Newly Developed Corner Smoothing Methodology Based on Clothoid Splines for High Speed Machine Tools
,”
Robot. Comput. Integr. Manuf.
,
70
, p.
102106
.
25.
Fan
,
W.
,
Lee
,
C. H.
, and
Chen
,
J. H.
,
2015
, “
A Realtime Curvature-Smooth Interpolation Scheme and Motion Planning for CNC Machining of Short Line Segments
,”
Int. J. Mach. Tools Manuf.
,
96
, pp.
27
46
.
26.
Hu
,
Q.
,
Chen
,
Y.
,
Jin
,
X.
, and
Yang
,
J.
,
2020
, “
A Real-Time C3 Continuous Tool Path Smoothing and Interpolation Algorithm for Five-Axis Machine Tools
,”
ASME J. Manuf. Sci. Eng.
,
142
(
4
), p.
041002
.
27.
Zhang
,
Y.
,
Zhao
,
M.
,
Ye
,
P.
, and
Zhang
,
H.
,
2019
, “
A G4 Continuous B-Spline Transition Algorithm for CNC Machining With Jerk-Smooth Feedrate Scheduling Along Linear Segments
,”
Comput. Aided Des.
,
115
, pp.
231
243
.
28.
Sun
,
Y. W.
,
Chen
,
M. S.
,
Jia
,
J. J.
,
Lee
,
Y. S.
, and
Guo
,
D. M.
,
2019
, “
Jerk-Limited Feedrate Scheduling and Optimization for Five-Axis Machining Using New Piecewise Linear Programming Approach
,”
Sci. China Technol. Sci.
,
62
(
7
), pp.
1067
1081
.
29.
Yang
,
J.
, and
Yuen
,
A.
,
2017
, “
An Analytical Local Corner Smoothing Algorithm for Five-Axis CNC Machining
,”
Int. J. Mach. Tools Manuf.
,
123
, pp.
22
35
.
30.
Beudaert
,
X.
,
Pechard
,
P. Y.
, and
Tournier
,
C.
,
2011
, “
5-Axis Tool Path Smoothing Based on Drive Constraints
,”
Int. J. Mach. Tools Manuf.
,
51
(
12
), pp.
958
965
.
31.
Beudaert
,
X.
,
Lavernhe
,
S.
, and
Tournier
,
C.
,
2013
, “
5-Axis Local Corner Rounding of Linear Tool Path Discontinuities
,”
Int. J. Mach. Tools Manuf.
,
73
, pp.
9
16
.
32.
Shi
,
J.
,
Bi
,
Q. Z.
,
Zhu
,
L. M.
, and
Wang
,
Y. H.
,
2015
, “
Corner Rounding of Linear Five-Axis Tool Path by Dual PH Curves Blending
,”
Int. J. Mach. Tools Manuf.
,
88
, pp.
223
236
.
33.
Huang
,
J.
,
Du
,
X.
, and
Zhu
,
L. M.
,
2018
, “
Real-Time Local Smoothing for Five-Axis Linear Toolpath Considering Smoothing Error Constraints
,”
Int. J. Mach. Tools Manuf.
,
124
, pp.
67
79
.
34.
Wan
,
M.
,
Qin
,
X. B.
,
Xiao
,
Q. B.
,
Liu
,
Y.
, and
Zhang
,
W. H.
,
2021
, “
Asymmetrical Pythagorean-Hodograph (PH) Spline-Based C3 Continuous Corner Smoothing Algorithm for Five-Axis Tool Paths With Short Segments
,”
J. Manuf. Process.
,
64
, pp.
1387
1411
.
35.
Xu
,
F.
, and
Sun
,
Y.
,
2018
, “
A Circumscribed Corner Rounding Method Based on Double Cubic B-Splines for a Five-Axis Linear Tool Path
,”
Int. J. Adv. Manuf. Technol.
,
94
(
1–4
), pp.
451
462
.
36.
Sun
,
S.
, and
Altintas
,
Y.
,
2021
, “
A G3 Continuous Tool Path Smoothing Method for 5-Axis CNC Machining
,”
CIRP J. Manuf. Sci. Technol.
,
32
, pp.
529
549
.
37.
Biagiotti
,
L.
, and
Melchiorri
,
C.
,
2012
, “
FIR Filters for Online Trajectory Planning With Time- and Frequency-Domain Specifications
,”
Control Eng. Pract.
,
20
(
12
), pp.
1385
1399
.
38.
Calleja
,
A.
,
Bo
,
P.
,
González
,
H.
,
Bartoň
,
M.
, and
López de Lacalle
,
L. N.
,
2018
, “
Highly Accurate 5-Axis Flank CNC Machining With Conical Tools
,”
Int. J. Adv. Manuf. Technol.
,
97
(
5–8
), pp.
1605
1615
.
39.
Hashemian
,
A.
,
Bo
,
P.
, and
Bartoň
,
M.
,
2020
, “
Reparameterization of Ruled Surfaces: Toward Generating Smooth Jerk-Minimized Toolpaths for Multi-Axis Flank CNC Milling
,”
Comput. Aided Des.
,
127
, p.
102868
.
40.
Lu
,
L.
,
Zhang
,
J.
,
Tian
,
X.
,
Han
,
J.
, and
Wang
,
H.
,
2021
, “
Tool Path Optimization for Robotic Surface Machining by Using Sampling-Based Motion Planning Algorithms
,”
ASME J. Manuf. Sci. Eng.
,
143
(
1
), p.
011002
.
41.
Habibi
,
M.
,
Kilic
,
Z. M.
, and
Altintas
,
Y.
,
2021
, “
Minimizing Flute Engagement to Adjust Tool Orientation for Reducing Surface Errors in Five-Axis Ball End Milling Operations
,”
ASME J. Manuf. Sci. Eng.
,
143
(
2
), p.
021009
.
42.
Bi
,
Q.
,
Shi
,
J.
,
Wang
,
Y.
,
Zhu
,
L.
, and
Ding
,
H.
,
2015
, “
Analytical Curvature-Continuous Dual-Bézier Corner Transition for Five-Axis Linear Tool Path
,”
Int. J. Mach. Tools Manuf.
,
91
, pp.
96
108
.
43.
Zhang
,
Y.
,
Wang
,
T.
,
Dong
,
J.
,
Peng
,
P.
,
Liu
,
Y.
, and
Ke
,
R.
,
2020
, “
An Analytical G3 Continuous Corner Smoothing Method With Adaptive Constraints Adjustments for Five-Axis Machine Tool
,”
Int. J. Adv. Manuf. Technol.
,
109
(
3
), pp.
1007
1026
.
44.
Pateloup
,
V.
,
Duc
,
E.
, and
Ray
,
P.
,
2010
, “
Bspline Approximation of Circle Arc and Straight Line for Pocket Machining
,”
Comput. Aided Des.
,
42
(
9
), pp.
817
827
.
45.
Lin
,
M. T.
,
Tsai
,
M. S.
, and
Yau
,
H. T.
,
2007
, “
Development of a Dynamics-Based NURBS Interpolator With Real-Time Look-Ahead Algorithm
,”
Int. J. Mach. Tools Manuf.
,
47
(
15
), pp.
2246
2262
.
You do not currently have access to this content.