Abstract

This article presents a hybrid model to update the position-dependent structural dynamic parameters of thin-walled workpieces as the metal is removed during machining. The initial workpiece is modeled by shell elements, and its full stiffness and mass matrices are used to solve the eigenvalues and mode shapes to predict the frequency response function (FRF) at a fixed location. The model is calibrated using the experimentally measured FRF, which reduces the errors contributed by the uncertainties in the material properties and damping values. The optimized finite element (FE) model is then perturbed at discrete cutting locations to obtain the updated natural frequencies and mode shapes of the part without solving the computationally prohibitive eigenvalue problem. The accuracy of the model is further improved by using either full FE solutions or experimental measurements of FRFs at a few intermediate steps which reduce the accumulated perturbation errors along the tool path. The proposed method is verified in five-axis milling of a thin-walled twisted fan blade. It is shown that using shell elements reduces the computation effort by ∼20 times compared to the conventional three-dimensional (3D) cube elements. The experimental calibration of the numerical model at a few discrete locations reduces the prediction error of natural frequencies by about 50%.

References

1.
Adetoro
,
O. B.
,
Sim
,
W. M.
, and
Wen
,
P. H.
,
2010
, “
An Improved Prediction of Stability Lobes Using Nonlinear Thin Wall Dynamics
,”
J. Mater. Process. Technol.
,
210
(
6–7
), pp.
969
979
.
2.
Biermann
,
D.
,
Kersting
,
P.
, and
Surmann
,
T.
,
2010
, “
A General Approach to Simulating Workpiece Vibrations During Five-Axis Milling of Turbine Blades
,”
CIRP Ann.—Manuf. Technol.
,
59
(
1
), pp.
125
128
.
3.
Campa
,
F. J.
,
Lopez De Lacalle
,
L. N.
, and
Celaya
,
A.
,
2011
, “
Chatter Avoidance in the Milling of Thin Floors With Bull-Nose End Mills: Model and Stability Diagrams
,”
Int. J. Mach. Tools Manuf.
,
51
(
1
), pp.
43
53
.
4.
Stepan
,
G.
,
Kiss
,
A. K.
,
Ghalamchi
,
B.
,
Sopanen
,
J.
, and
Bachrathy
,
D.
,
2017
, “
Chatter Avoidance in Cutting Highly Flexible Workpieces
,”
CIRP Ann.—Manuf. Technol.
,
66
(
1
), pp.
377
380
.
5.
Ratchev
,
S.
,
Liu
,
S.
,
Huang
,
W.
, and
Becker
,
A. A.
,
2006
, “
An Advanced FEA Based Force Induced Error Compensation Strategy in Milling
,”
Int. J. Mach. Tools Manuf.
,
46
(
5
), pp.
542
551
.
6.
Kersting
,
P.
, and
Biermann
,
D.
,
2014
, “
Modeling Techniques for Simulating Workpiece Deflections in NC Milling
,”
CIRP J. Manuf. Sci. Technol.
,
7
(
1
), pp.
48
54
.
7.
Budak
,
E.
,
Tunç
,
L. T.
,
Alan
,
S.
, and
Özgüven
,
H. N.
,
2012
, “
Prediction of Workpiece Dynamics and Its Effects on Chatter Stability in Milling
,”
CIRP Ann.—Manuf. Technol.
,
61
(
1
), pp.
339
342
.
8.
Yang
,
Y.
,
Zhang
,
W. H.
,
Ma
,
Y. C.
, and
Wan
,
M.
,
2016
, “
Chatter Prediction for the Peripheral Milling of Thin-Walled Workpieces With Curved Surfaces
,”
Int. J. Mach. Tools Manuf.
,
109
, pp.
36
48
.
9.
Dang
,
X. B.
,
Wan
,
M.
,
Yang
,
Y.
, and
Zhang
,
W. H.
,
2019
, “
Efficient Prediction of Varying Dynamic Characteristics in Thin-Wall Milling Using Freedom and Mode Reduction Methods
,”
Int. J. Mech. Sci.
,
150
, pp.
202
216
.
10.
Tian
,
W.
,
Ren
,
J.
,
Zhou
,
J.
, and
Wang
,
D.
,
2018
, “
Dynamic Modal Prediction and Experimental Study of Thin-Walled Workpiece Removal Based on Perturbation Method
,”
Int. J. Adv. Manuf. Technol.
,
94
(
5–8
), pp.
2099
2113
.
11.
Tuysuz
,
O.
, and
Altintas
,
Y.
,
2017
, “
Time-Domain Modeling of Varying Dynamic Characteristics in Thin-Wall Machining Using Perturbation and Reduced-Order Substructuring Methods
,”
ASME J. Manuf. Sci. Eng.
,
140
(
1
), p.
011015
.
12.
Tuysuz
,
O.
, and
Altintas
,
Y.
,
2017
, “
Frequency Domain Updating of Thin-Walled Workpiece Dynamics Using Reduced Order Substructuring Method in Machining
,”
ASME J. Manuf. Sci. Eng.
,
139
(
7
), p.
071013
.
13.
Li
,
Z. L.
,
Tuysuz
,
O.
,
Zhu
,
L. M.
, and
Altintas
,
Y.
,
2018
, “
Surface Form Error Prediction in Five-Axis Flank Milling of Thin-Walled Parts
,”
Int. J. Mach. Tools Manuf.
,
128
(
October
), pp.
21
32
.
14.
Altintas
,
Y.
,
Tuysuz
,
O.
,
Habibi
,
M.
, and
Li
,
Z. L.
,
2018
, “
Virtual Compensation of Deflection Errors in Ball End Milling of Flexible Blades
,”
CIRP Ann.
,
67
(
1
), pp.
365
368
.
15.
Habibi
,
M.
,
Tuysuz
,
O.
, and
Altintas
,
Y.
,
2018
, “
Modification of Tool Orientation and Position to Compensate Tool and Part Deflections in Five-Axis Ball End Milling Operations
,”
ASME J. Manuf. Sci. Eng.
,
141
(
3
), p.
031004
.
16.
Zhang
,
X.-M.
,
Zhu
,
L.-M.
, and
Ding
,
H.
,
2020
, “
Matrix Perturbation Method for Predicting Dynamic Modal Shapes of the Workpiece in High-Speed Machining
,”
Proc. Inst. Mech. Eng. Part B: J. Eng. Manufac.
,
224
(
1
), pp.
177
183
.
17.
Wang
,
D.
,
Ren
,
J.
,
Tian
,
W.
,
Shi
,
K.
, and
Zhang
,
B.
,
2019
, “
Predicting the Dynamics of Thin-Walled Parts With Curved Surfaces in Milling Based on FEM and Taylor Series
,”
Int. J. Adv. Manuf. Technol.
,
103
, pp.
927
942
.
18.
Grossi
,
N.
,
Scippa
,
A.
,
Croppi
,
L.
,
Morelli
,
L.
, and
Campatelli
,
G.
,
2019
, “
Adaptive Toolpath for 3-Axis Milling of Thin Walled Parts
,”
MM Sci. J.
, pp.
3378
3385
.
19.
Carvalho
,
J.
,
Datta
,
B. N.
,
Gupta
,
A.
, and
Lagadapati
,
M.
,
2007
, “
A Direct Method for Model Updating With Incomplete Measured Data and Without Spurious Modes
,”
Mech. Syst. Signal Process.
,
21
(
7
), pp.
2715
2731
.
20.
Esfandiari
,
A.
,
Bakhtiari-Nejad
,
F.
,
Rahai
,
A.
, and
Sanayei
,
M.
,
2009
, “
Structural Model Updating Using Frequency Response Function and Quasi-linear Sensitivity Equation
,”
J. Sound Vib.
,
326
(
3–5
), pp.
557
573
.
21.
Logan
,
D. L.
,
2011
,
A First Course in the Finite Element Method
, United States: Cengage Learning.
22.
Zienkiewicz
,
O. C.
, and
Taylor
,
R. L.
,
2013
,
The Finite Element Method: Its Basis and Fundamentals
,
Elsevier
,
New York
.
23.
Zienkiewicz
,
O. C.
, and
Taylor
,
R. L.
,
2005
,
The Finite Element Method for Solid and Structural Mechanics
,
Elsevier
,
New York
.
24.
Abramowitz
,
M.
, and
Stegun
,
I. A.
, eds.,
1964
,
Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables
, US Government Printing Office.
25.
Wang
,
X.
,
Li
,
Z.
,
Bi
,
Q.
,
Zhu
,
L.
, and
Ding
,
H.
,
2019
, “
An Accelerated Convergence Approach for Real-Time Deformation Compensation in Large Thin-Walled Parts Machining
,”
Int. J. Mach. Tools Manuf.
,
142
, pp.
98
106
.
26.
Altintas
,
Y.
,
2012
, Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations, and CNC Design, Cambridge University Press, Cambridge, UK, https://books.google.ca/books?id=ssZRvwEACAAJ.
27.
Chen
,
S. H.
,
Wu
,
X. M.
, and
Yang
,
Z. J.
,
2006
, “
Eigensolution Reanalysis of Modified Structures Using Epsilon-Algorithm
,”
Int. J. Numer. Methods Eng.
,
66
(
13
), pp.
2115
2130
.
28.
Chen
,
J. C.
, and
Wada
,
B. K.
,
1977
, “
Matrix Perturbation for Structural Dynamic Analysis
,”
AIAA J.
,
15
(
8
), pp.
1095
1100
.
29.
Zhang
,
X.-M.
,
Zhu
,
L.-M.
, and
Ding
,
H.
,
2010
, “
Matrix Perturbation Method for Predicting Dynamic Modal Shapes of the Workpiece in High-Speed Machining
,”
Proc. Inst. Mech. Eng. Part B J. Eng. Manuf.
,
224
(
1
), pp.
177
183
.
You do not currently have access to this content.