Abstract

In recent years, with higher demand on the sustainability aspects of engineering materials, single crystal-based products have gained a good reputation because of many different advantages. Single-crystal materials provide a uniform set of properties with fewer defects, such as the traditional casting process facilitates polycrystalline formation, which has grain boundaries that lead to creep failure. Besides, it has a high hardness and strength, making it very difficult to machine. A few studies only have discussed the conventional machining of single crystals metals and superalloys. This study conducted a comprehensive review on different traditional machining and different single-crystal metals such as aluminum, copper, and nickel-based superalloys. The main feature of this review is to provide a general recommendation for the optimum selection of the process parameters, which will guide to produce a good quality and a high precision dimensional surface during the single-crystal machining operation. In addition, this study discusses the challenges that restrict the machining of single-crystal metals and superalloys. Such a review rarely exists in the literature.

References

1.
Zhang
,
K.
,
Pitner
,
X. B.
,
Yang
,
R.
,
Nix
,
W. D.
,
Plummer
,
J. D.
, and
Fan
,
J. A.
,
2018
, “
Single-Crystal Metal Growth on Amorphous Insulating Substrates
,”
Proc. Natl. Acad. Sci. U. S. A
,
115
(
4
), pp.
685
689
.
2.
Gong
,
Y. D.
,
Li
,
Q.
,
Li
,
J. G.
,
Liu
,
Y.
, and
Sun
,
Y.
,
2018
, “
Tool Wear Performance and Surface Integrity Studies for Milling DD5 Ni-Based Single Crystal Superalloy
,”
Sci. China Technol. Sci.
,
61
(
4
), pp.
522
534
.
3.
Ramalingam
,
S.
, and
Hazra
,
J.
,
1972
,
Dynamic Shear Stress—Analysis of Single Crystal Machining Studies
. ASME Paper No. 72-WA/Prod-20.
4.
Dexin
,
M. A.
,
2018
, “
Novel Casting Processes for Single-Crystal Turbine Blades of Superalloys
,”
Front. Mech. Eng.
,
13
(
1
), pp.
3
16
.
5.
Ding
,
X.
,
Jarfors
,
A. E. W.
,
Lim
,
G. C.
,
Shaw
,
K. C.
,
Liu
,
Y. C.
, and
Tang
,
L. J.
,
2012
, “
A Study of the Cutting Performance of Poly-Crystalline Oxygen Free Copper With Single Crystalline Diamond Micro-Tools
,”
Precis. Eng.
,
36
(
1
), pp.
141
152
.
6.
Owens-Baird
,
B.
,
Sousa
,
J. P. S.
,
Ziouani
,
Y.
,
Petrovykh
,
D. Y.
,
Zarkevich
,
N. A.
,
Johnson
,
D. D.
,
Kolen'ko
,
Y. V.
, and
Kovnir
,
K.
,
2020
, “
Crystallographic Facet Selective HER Catalysis: Exemplified in FeP and NiP2single Crystals
,”
Chem. Sci.
,
11
(
19
), pp.
5007
5016
.
7.
Pen
,
H. M.
,
Liang
,
Y. C.
,
Luo
,
X. C.
,
Bai
,
Q. S.
,
Goel
,
S.
, and
Ritchie
,
J. M.
,
2011
, “
Multiscale Simulation of Nanometric Cutting of Single Crystal Copper and Its Experimental Validation
,”
Comput. Mater. Sci.
,
50
(
12
), pp.
3431
3441
.
8.
Du Kim
,
J.
, and
Moon
,
C. H.
,
1996
, “
A Study on Microcutting for the Configuration of Tools Using Molecular Dynamics
,”
J. Mater. Process. Technol.
,
59
(
4
), pp.
309
314
.
9.
Maekawa
,
K.
, and
Itoh
,
A.
,
1995
, “
Friction and Tool Wear in Nano-Scale Machining—A Approach
,”
Wear.
,
188
(
1–2
), pp.
115
122
.
10.
Zhang
,
J. J.
,
Sun
,
T.
,
Yan
,
Y. D.
,
Liang
,
Y. C.
, and
Dong
,
S.
,
2008
, “
Molecular Dynamics Simulation of Subsurface Deformed Layers in AFM-Based Nanometric Cutting Process
,”
Appl. Surf. Sci.
,
254
(
15
), pp.
4774
4779
.
11.
Komanduri
,
R.
, and
Raff
,
L. M.
,
2001
, “
A Review on the Molecular Dynamics Simulation of Machining at the Atomic Scale
,”
Proc. Inst. Mech. Eng. Part B J. Eng. Manuf.
,
215
(
12
), pp.
1639
1672
.
12.
Williams
,
J. A.
, and
Gane
,
N.
,
1977
, “
Some Observations on the Flow Stress of Metals During Metal Cutting
,”
Wear.
,
42
(
2
), pp.
341
353
.
13.
Wang
,
Z.
,
Sun
,
T.
,
Zhang
,
H.
,
Li
,
G.
,
Li
,
Z.
,
Zhang
,
J.
,
Yan
,
Y.
, and
Hartmaier
,
A.
,
2019
, “
The Interaction Between Grain Boundary and Tool Geometry in Nanocutting of a bi-Crystal Copper
,”
Int. J. Extrem. Manuf.
,
1
(
4
).
14.
Liu
,
Q.
,
Roy
,
A.
,
Tamura
,
S.
,
Matsumura
,
T.
, and
Silberschmidt
,
V. V.
,
2016
, “
Micro-cutting of Single-Crystal Metal: Finite-Element Analysis of Deformation and Material Removal
,”
Int. J. Mech. Sci.
,
118
, pp.
135
143
.
15.
Tajalli
,
S. A.
,
Movahhedy
,
M. R.
, and
Akbari
,
J.
,
2014
, “
Simulation of Orthogonal Micro-Cutting of FCC Materials Based on Rate-Dependent Crystal Plasticity Finite Element Model
,”
Comput. Mater. Sci.
,
86
, pp.
79
87
.
16.
Shahinian
,
H.
,
Di
,
K.
,
Navare
,
J.
,
Bodlapati
,
C.
,
Zaytsev
,
D.
, and
Ravindra
,
D.
,
2020
, “
Ultraprecision Laser-Assisted Diamond Machining of Single Crystal Ge
,”
Precis. Eng.
,
65
, pp.
149
155
.
17.
Zhang
,
J.
,
Zhang
,
J.
,
Liu
,
C.
,
Chen
,
X.
,
Xiao
,
J.
, and
Xu
,
J.
,
2020
, “
Machinability of Single Crystal Calcium Fluoride by Applying Elliptical Vibration Diamond Cutting
,”
Precis. Eng.
,
66
, pp.
306
314
.
18.
Black
,
J. T.
,
1971
, “
On the Fundamental Mechanism of Large Strain Plastic Deformation Electron Microscopy of Metal Cutting Chips
,”
ASME J. Manuf. Sci. Eng.
,
93
(
2
), pp.
507
526
.
19.
Ueda
,
K.
, and
Iwata
,
K.
,
1980
, “
CHIP Formation Mechanism in Single Crystal Cutting OF Beta -BRASS
,”
Ann. ICRP
,
29
(
1
), pp.
41
46
.
20.
Lee
,
W. B.
,
To
,
S.
, and
Cheung
,
C. F.
,
2000
, “
Effect of Crystallographic Orientation in Diamond Turning of Copper Single Crystals
,”
Scr. Mater.
,
42
(
10
), pp.
937
945
.
21.
Pervaiz
,
S.
,
Kannan
,
S.
, and
Kishawy
,
H. A.
,
2018
, “
An Extensive Review of the Water Consumption and Cutting Fluid Based Sustainability Concerns in the Metal Cutting Sector
,”
J. Clean. Prod.
,
197
(Part 1), pp.
134
153
.
22.
Wang
,
Z.
,
Zhang
,
J.
,
Xu
,
Z.
,
Zhang
,
J.
,
Li
,
G.
,
Zhang
,
H.
,
Li
,
Z.
, et al
,
2020
, “
Crystal Anisotropy-Dependent Shear Angle Variation in Orthogonal Cutting of Single Crystalline Copper
,”
Precis. Eng.
,
63
, pp.
41
48
.
23.
Song
,
Y. C.
,
Nezu
,
K.
,
Park
,
C. H.
, and
Moriwaki
,
T.
,
2009
, “
Tool Wear Control in Single-Crystal Diamond Cutting of Steel by Using the Ultra-Intermittent Cutting Method
,”
Int. J. Mach. Tools Manuf.
,
49
(
3–4
), pp.
339
343
.
24.
Zhang
,
P.
,
Cao
,
X.
,
Zhang
,
X.
, and
Wang
,
Y.
,
2020
Effects of Cutting Parameters on the Subsurface Damage of Single Crystal Copper During Nanocutting Process
,”
Vacuum.
,
187
, pp.
109420
102021
.
25.
Venkatachalam
,
S.
,
Li
,
X.
, and
Liang
,
S. Y.
,
2009
, “
Predictive Modeling of Transition Undeformed Chip Thickness in Ductile-Regime Micro-Machining of Single Crystal Brittle Materials
,”
J. Mater. Process. Technol.
,
209
(
7
), pp.
3306
3319
.
26.
Evans
,
C. J.
,
Browy
,
E. C.
,
Childs
,
T. H. C.
, and
Paul
,
E.
,
2015
, “
Interferometric Measurements of Single Crystal Diamond Tool Wear
,”
CIRP Ann.—Manuf. Technol.
,
64
(
1
), pp.
125
128
.
27.
Chon
,
K. S.
,
Takahashi
,
H.
, and
Namba
,
Y.
,
2014
, “
Wear Inspection of a Single-Crystal Diamond Tool Used in Electroless Nickel Turning
,”
Opt. Eng.
,
53
(
3
), p.
034102
.
28.
Min
,
S.
,
Dornfeld
,
D.
,
Inasaki
,
I.
,
Ohmori
,
H.
,
Lee
,
D.
,
Deichmueller
,
M.
,
Yasuda
,
T.
, and
Niwa
,
K.
,
2006
, “
Variation in Machinability of Single Crystal Materials in Micromachining
,”
CIRP Ann.—Manuf. Technol.
,
55
(
1
), pp.
103
106
.
29.
Zahedi
,
S. A.
,
Roy
,
A.
, and
Silberschmidt
,
V. V.
,
2013
, “
Modeling of Micro-Machining Single-Crystal f.c.c. Metals
,”
Procedia CIRP.
,
8
, pp.
346
350
.
30.
Gotterbarm
,
M. R.
,
Rausch
,
A. M.
, and
Körner
,
C.
,
2020
, “
Fabrication of Single Crystals Through a μ-Helix Grain Selection Process During Electron Beam Metal Additive Manufacturing
,”
Metals (Basel)
,
10
(
3
).
31.
Li
,
J.
,
Ruicheng
,
F.
,
Qiao
,
H.
, and
Li
, H.
,
2019
,
Effect of Cutting Crystal Directions on Micro-Defect Evolution of Single Crystal γ-TiAl Alloy With Molecular Dynamics Simulation
,
Metals mDPI
,
Basel, Switzerland
.
32.
Lay
,
M.
,
Franca
,
L.
,
Hall
,
J.
,
Bodkin
,
R.
,
Marsh
,
D.
,
Watts
,
A.
, and
Schoofs
,
F.
,
2015
, “
Performance of Single Crystal Diamond Tools in Metal Matrix Composite Machining
,”
INTERTECH 2015—An Int. Tech. Conf. Diamond, Cubic Boron Nitride Their Appl.
,
May
.
33.
Fang
,
Y.
,
Hu
,
R.
,
Ding
,
S. Y.
, and
Tian
,
Z. Q.
,
2021
, “
A Quantitative Simulation Method for Electrochemical Infrared and Raman Spectroscopies of Single-Crystal Metal Electrodes
,”
J. Electroanal. Chem.
,
896
, p.
115337
.
34.
Choi
,
D. H.
,
Lee
,
J. R.
,
Kang
,
N. R.
,
Je
,
T. J.
,
Kim
,
J. Y.
, and
chae Jeon
,
E.
,
2017
, “
Study on Ductile Mode Machining of Single-Crystal Silicon by Mechanical Machining
,”
Int. J. Mach. Tools Manuf.
,
113
, pp.
1
9
.
35.
Nahata
,
S.
,
Moradi
,
M.
,
Picard
,
Y. N.
,
Kota
,
N.
, and
Ozdoganlar
,
O. B.
,
2021
, “
Micromachining Imposed Subsurface Plastic Deformation in Single-Crystal Aluminum
,”
Mater. Charact.
,
171
, p.
110747
.
36.
Jiang
,
L.
,
Dou
,
X.
, and
Wu
,
M.
,
2020
, “
Effect of Stress on Creep Behavior of Single Crystal Alloy IC6SX at 980 °C
,”
Int. J. Photoenergy.
,
2020
.
37.
Li
,
W.
,
Sharples
,
S. D.
,
Smith
,
R. J.
,
Clark
,
M.
, and
Somekh
,
M. G.
,
2012
, “
Determination of Crystallographic Orientation of Large Grain Metals With Surface Acoustic Waves
,”
J. Acoust. Soc. Am.
,
132
(
2
), pp.
738
745
.
38.
Prajapati
,
A. R.
, and
Rajpurohit
,
S.
,
2017
, “
Formation and Applications of Single Crystal Material
,”
Indian J. Sci. Res.
,
17
(
2
), pp.
53
59
.
39.
Kota
,
N.
, and
Ozdoganlar
,
O. B.
,
2012
, “
Orthogonal Machining of Single-Crystal and Coarse-Grained Aluminum
,”
J. Manuf. Process
,
14
(
2
), pp.
126
134
.
40.
Shizuka
,
H.
,
Okuda
,
K.
,
Nunobiki
,
M.
, and
Inada
,
Y.
,
2011
, “
Study on Surface Roughness in Micro end Milling of Mold Material
,”
Adv. Mater. Res.
,
325
, pp.
594
599
.
41.
Yang
,
G.
, and
Park
,
S. J.
,
2019
, “
Deformation of Single Crystals, Polycrystalline Materials, and Thin Films: A Review
,”
Materials (Basel)
,
12
(
12)
.
42.
Demiral
,
M.
,
Roy
,
A.
,
El Sayed
,
T.
, and
Silberschmidt
,
V. V.
,
2014
, “
Numerical Modelling of Micro-Machining of f.c.c. Single Crystal: Influence of Strain Gradients
,”
Comput. Mater. Sci.
,
94
(
C
), pp.
273
278
.
43.
Sun
,
Y.
,
Su
,
Z. P.
,
Gong
,
Y. D.
,
Jin
,
L. Y.
,
Wen
,
Q.
, and
Qi
,
Y.
,
2020
, “
An Experimental and Numerical Study of Micro-Grinding Force and Performance of Sapphire Using Novel Structured Micro Abrasive Tool
,”
Int. J. Mech. Sci.
,
181
.
44.
Komanduri
,
R.
,
Chandrasekaran
,
N.
, and
Raff
,
L. M.
,
2000
, “
M.D. Simulation of Nanometric Cutting of Single Crystal Aluminum-Effect of Crystal Orientation and Direction of Cutting
,”
Wear
,
242
(
1–2
), pp.
60
88
.
45.
Lawson
,
B. L.
,
Kota
,
N.
, and
Ozdoganlar
,
O. B.
,
2008
, “
Effects of Crystallography Anistropy on Orthogonal Micromachining of Single-Crystal Aluminum
,”
ASME J. Manuf. Sci. Eng.
,
130
(
3
), p.
031116
.
46.
Park
,
N.
,
Chau
,
T. K.
,
Lee
,
S. G.
,
Kang
,
H.
, and
Suh
,
D.
,
2021
, “
MoTe2 on Ferroelectric Single-Crystal Substrate in the Dual-Gate Field-Effect Transistor Operation
,”
Curr. Appl. Phys.
,
27
, pp.
38
42
.
47.
Wang
,
C.
,
Qin
,
H.
,
Cao
,
L.
,
Wang
,
D.
,
Zhang
,
J.
,
Zhang
,
B.
, and
Ou
,
X.
,
2022
, “
Engineered Single-Crystal Metal-Selenide for Rapid K-ion Diffusion and Polyselenide Convention
,”
Chem. Eng. J.
,
427
, p.
131963
.
48.
Kishida
,
K.
,
Nakatsuka
,
S.
,
Nose
,
H.
, and
Inui
,
H.
,
2022
, “
Room-temperature Deformation of Single Crystals of Transition-Metal Disilicides (TMSi2) With the C11b (TM = Mo) and C40 (TM = V, Cr, Nb and Ta) Structures Investigated by Micropillar Compression
,”
Acta Mater.
,
223
, p.
117468
.
49.
Pouladi
,
S.
,
Asadirad
,
M.
,
KyuOh
,
S.
,
Shervin
,
S.
,
Chen
,
J.
,
Wang
,
W.
,
Manh
,
C.
, et al
,
2019
, “
Effects of Grain Boundaries on Conversion Efficiencies of Single-Crystal-Like GaAs Thin-Film Solar Cells on Flexible Metal Tapes
,”
Sol. Energy Mater. Sol. Cells
,
199
, pp.
122
128
.
50.
Zou
,
L.
,
Yin
,
J.
,
Huang
,
Y.
, and
Zhou
,
M.
,
2018
, “
Essential Causes for Tool Wear of Single Crystal Diamond in Ultra-Precision Cutting of Ferrous Metals
,”
Diam. Relat. Mater.
,
86
(
174
), pp.
29
40
.
51.
To
,
S.
, and
Lee
,
W. B.
,
2001
, “
Deformation Behaviour of Aluminium Single Crystals in Ultraprecision Diamond Turning
,”
J. Mater. Process. Technol.
,
113
(
1–3
), pp.
296
300
.
52.
Moktan
,
H.
,
Jayarathna
,
S.
, and
Cho
,
S. H.
,
2021
, “
Sensitivity Enhancement of an Experimental Benchtop X-Ray Fluorescence Imaging System by Deploying a Single Crystal Cadmium Telluride Detector System Optimized for High Flux X-Ray Operations
,”
Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip.
, p.
166198
.
53.
Goel
,
S.
,
Luo
,
X.
,
Reuben
,
R. L.
, and
Pen
,
H.
,
2012
, “
Influence of Temperature and Crystal Orientation on Tool Wear During Single Point Diamond Turning of Silicon
,”
Wear
,
284–285
, pp.
65
72
.
54.
Kawamata
,
T.
,
Takahashi
,
K.
,
Kumagai
,
T.
,
Sugiyama
,
K.
, and
Fukuda
,
T.
,
2021
, “
Growth of Nickel Single Crystals With a Diameter of 8 in. Using the Czochralski Method
,”
J. Cryst. Growth.
,
573
, p.
126271
.
55.
Zhang
,
Z.
,
Du
,
G.
,
Gong
,
D.
,
Sheng
,
Y.
,
Lu
,
X.
,
Cai
,
W.
,
Wang
,
F.
, and
Zhao
,
G.
,
2021
, “
A Novel Ferrocene-Palladium Metal Complex: Synthesis, Single Crystal Structure, in Vitro Cytotoxicity Study and Molecular Docking
,”
J. Mol. Struct.
,
1232
, p.
130021
.
56.
Abolfazl Zahedi
,
S.
,
Demiral
,
M.
,
Roy
,
A.
, and
Silberschmidt
,
V. V.
,
2013
, “
FE/SPH Modelling of Orthogonal Micro-Machining of f.c.c. Single Crystal
,”
Comput. Mater. Sci.
,
78
, pp.
104
109
.
57.
Wang
,
Y.
,
Zhao
,
Q.
,
Shang
,
Y.
,
Lv
,
P.
,
Guo
,
B.
, and
Zhao
,
L.
,
2011
, “
Ultra-Precision Machining of Fresnel Microstructure on Die Steel Using Single Crystal Diamond Tool
,”
J. Mater. Process. Technol.
,
211
(
12
), pp.
2152
2159
.
58.
Zou
,
L.
,
Dong
,
G.
, and
Zhou
,
M.
,
2013
, “
Investigation on Frictional Wear of Single Crystal Diamond Against Ferrous Metals
,”
Int. J. Refract. Met. Hard Mater.
,
41
, pp.
174
179
.
59.
Zhang
,
Y.
,
Xu
,
Z.
,
Zhu
,
Y.
, and
Zhu
,
D.
,
2016
, “
Machining of a Film-Cooling Hole in a Single-Crystal Superalloy by High-Speed Electrochemical Discharge Drilling
,”
Chinese J. Aeronaut.
,
29
(
2
), pp.
560
570
.
60.
Sun
,
Z.
,
To
,
S.
, and
Yu
,
K. M.
,
2019
, “
Feasibility Investigation on Ductile Machining of Single-Crystal Silicon for Deep Micro-Structures by Ultra-Precision fly Cutting
,”
J. Manuf. Process.
,
45
, pp.
176
187
.
61.
Choong
,
Z. J.
,
Huo
,
D.
,
Degenaar
,
P.
, and
O’Neill
,
A.
,
2019
, “
Micro-Machinability and Edge Chipping Mechanism Studies on Diamond Micro-Milling of Monocrystalline Silicon
,”
J. Manuf. Process.
,
38
, pp.
93
103
.
62.
Pang
,
Q.
,
Shu
,
Z.
,
Kuang
,
L.
, and
Xu
,
Y.
,
2021
, “
Effect of Actual Frequency Features Generated in Machining Process on the Temperature and Thermal Stress of Potassium Dihydrogen Phosphate Crystal
,”
Mater. Today Commun.
,
29
, p.
102984
.
63.
Anand Kumar
,
S.
,
Rajkumar
,
V.
,
Nagesha
,
B. K.
,
Tigga
,
A. K.
,
Barad
,
S.
, and
Suresh
,
T. N.
,
2021
, “
Single Crystal Metal Deposition Using Laser Additive Manufacturing Technology for Repair of Aero-Engine Components
,”
Mater. Today Proc.
,
45
, pp.
5395
5399
.
64.
Geng
,
Y.
,
Jia
,
J.
,
Li
,
Z.
,
Liu
,
Y.
,
Wang
,
J.
,
Yan
,
Y.
, and
Gan
,
Y.
,
2021
, “
Modeling and Experimental Study of Machining Outcomes When Conducting Nanoscratching Using Dual-tip Probe on Single-Crystal Copper
,”
Int. J. Mech. Sci.
,
206
, p.
106649
.
65.
Pei
,
H.
,
Wang
,
J.
,
Li
,
Z.
,
Li
,
Z.
,
Yao
,
X.
,
Wen
,
Z.
, and
Yue
,
Z.
,
2021
, “
Oxidation Behavior of Recast Layer of Air-Film Hole Machined by EDM Technology of Ni-Based Single Crystal Blade and its Effect on Creep Strength
,”
Surf. Coatings Technol.
,
419
, p.
127285
.
66.
qing Yu
,
Y.
,
cheng Zhou
,
L.
,
bing Cai
,
Z.
, and
feng He
,
W.
,
2021
, “
DD6 Single-Crystal Superalloy With Thermal Barrier Coating in Femtosecond Laser Percussion Drilling
,”
Opt. Laser Technol.
,
133
, p.
106555
.
67.
Cheng
,
J.
,
Xiao
,
Y.
,
Liu
,
Q.
,
Yang
,
H.
,
Zhao
,
L.
,
Chen
,
M.
,
Tan
,
J.
, et al
,
2018
, “
Effect of Surface Scallop Tool Marks Generated in Micro-Milling Repairing Process on the Optical Performance of Potassium Dihydrogen Phosphate Crystal
,”
Mater. Des.
,
157
, pp.
447
456
.
68.
Demir
,
E.
,
2008
, “
Taylor-based Model for Micro-Machining of Single Crystal fcc Materials Including Frictional Effects-Application to Micro-Milling Process
,”
Int. J. Mach. Tools Manuf.
,
48
(
14
), pp.
1592
1598
.
69.
Li
,
F.
,
Zhang
,
Y.
,
Wu
,
Z.
,
Ren
,
X.
,
Yue
,
X.
,
Pei
,
H.
, and
Yue
,
Z.
,
2022
, “
Fatigue Crack Initiation and Propagation Behavior of Nickel-Based Single Crystal DD6 Under Different Drilling Processes
,”
Mater. Sci. Eng. A.
,
831
, p.
142246
.
70.
Ikuta
,
A.
,
Shinozaki
,
K.
,
Masuda
,
H.
,
Yamane
,
Y.
,
Kuroki
,
H.
, and
Fukaya
,
Y.
,
2002
, “
Consideration of the Adhesion Mechanism of Ti Alloys Using a Cemented Carbide Tool During the Cutting Process
,”
J. Mater. Process. Technol.
,
127
(
2
), pp.
251
255
.
71.
Mainé
,
J. M.
,
Batista
,
M.
,
García-Jurado
,
D.
,
Shaw
,
L.
, and
Marcos
,
M.
,
2013
, “
FVM Based Methodology for Evaluating Adhesion Wear of Cutting Tools
,”
Procedia CIRP.
,
8
, pp.
552
557
.
72.
Paik
,
S.
,
Dutta
,
B. K.
,
Kumar
,
N. N.
, and
Tewari
,
R.
,
2021
, “
Fracture Initiation in a Single Crystal Copper Edge-Crack
,”
Theor. Appl. Fract. Mech.
,
114
, p.
103019
.
73.
Grilli
,
N.
, and
Koslowski
,
M.
,
2018
, “
The Effect of Crystal Orientation on Shock Loading of Single Crystal Energetic Materials
,”
Comput. Mater. Sci.
,
155
, pp.
235
245
.
74.
To
,
S.
,
Lee
,
W. B.
, and
Chan
,
C. Y.
,
1997
, “
Ultraprecision Diamond Turning of Aluminium Single Crystals
,”
J. Mater. Process. Technol.
,
63
(
1–3
), pp.
157
162
.
75.
Demir
,
E.
, and
Mercan
,
C.
,
2018
, “
A Physics-Based Single Crystal Plasticity Model for Crystal Orientation and Length Scale Dependence of Machining Response
,”
Int. J. Mach. Tools Manuf.
,
134
, pp.
25
41
.
76.
Zhang
,
P.
,
Liu
,
Z.
,
Ma
,
B.
,
Li
,
P.
,
Zhou
,
Y.
, and
Tian
,
X.
,
2021
, “
Improving the Single Crystal LiNi0.8Co0.1Mn0.1O2 Cathode Material Performance by Fluorine Doping
,”
Ceram. Int.
,
47
(
23
), pp.
33843
33852
.
77.
Wang
,
J.
,
Su
,
Y.
,
Tian
,
Y.
,
Xiang
,
X.
,
Zhang
,
J.
,
Li
,
S.
, and
He
,
D.
,
2021
, “
Porous Single-Crystal Diamond
,”
Carbon N. Y.
,
183
, pp.
259
266
.
78.
Zhang
,
Y.
,
Wang
,
Q.
,
Li
,
C.
,
Piao
,
Y.
,
Hou
,
N.
, and
Hu
,
K.
,
2021
, “
Characterization of Surface and Subsurface Defects Induced by Abrasive Machining of Optical Crystals Using Grazing Incidence X-Ray Diffraction and Molecular Dynamics
,”
J. Adv. Res.
,
36
, pp.
51
61
.
79.
Han
,
X.
,
Yang
,
J.
,
Liu
,
Y. Y.
,
Xu
,
G. H.
, and
Ma
,
J. F.
,
2019
, “
Metal Ion Induced Single-Crystal-to-Single-Crystal Transformation and Luminescent Sensing Properties of resorcin4.Arene-Based Metal–Organic Frameworks
,”
Polyhedron
,
161
, pp.
145
153
.
80.
Zhang
,
C.
,
Wang
,
Z.
,
Tu
,
R.
,
Dong
,
M.
,
Li
,
J.
,
Yang
,
M.
, and
Li
,
Q.
, et al
,
2020
, “
Growth of Self-Aligned Single-Crystal Vanadium Carbide Nanosheets With a Controllable Thickness on a Unique Staked Metal Substrate
,”
Appl. Surf. Sci.
,
499
, p.
143998
.
81.
Zhou
,
S.
,
Lu
,
D.
,
Sun
,
X.
,
Yin
,
K.
,
Zhang
,
G.
,
Chen
,
M.
, and
Li
,
H.
,
2021
, “
One-Pot Synthesis of Metal-Free, Yellow-Emitting Phosphor With Organic Single Crystal as a Matrix
,”
Dye. Pigment
,
193
, p.
109518
.
82.
Wu
,
T.
,
Deng
,
G.
, and
Zhen
,
C.
,
2021
, “
Metal Oxide Mesocrystals and Mesoporous Single Crystals: Synthesis, Properties and Applications in Solar Energy Conversion
,”
J. Mater. Sci. Technol.
,
73
, pp.
9
22
.
83.
Zhang
,
Z.
,
Liu
,
F.
,
Huang
,
Z.
,
Yi
,
M.
,
Fan
,
X.
,
Bai
,
M.
,
Hong
,
B.
, et al
,
2022
, “
Improving Interfacial Stability of Ultrahigh-Voltage Lithium Metal Batteries with Single-Crystal Ni-Rich Cathode via a Multifunctional Additive Strategy
,”
J. Colloid Interface Sci.
,
608
, pp.
1471
1480
.
84.
Komanduri
,
R.
,
Chandrasekaran
,
N.
, and
Raff
,
L. M.
,
1999
, “
Orientation Effects in Nanometric Cutting of Single Crystal Materials: an MD Simulation Approach
,”
CIRP Ann.—Manuf. Technol.
,
48
(
1
), pp.
67
72
.
85.
Komanduri
,
R.
,
Chandrasekaran
,
N.
,
Raff
,
L.M.
,
1999
, “
Orientation Effects in Nanometric Cutting of Single Crystal Materials: An MD Simulation Approach
,”
CIRP Ann.
48
, pp.
67
72
.
86.
Xu
,
B.
,
Yin
,
H.
,
Jiang
,
X.
,
Zhang
,
C.
,
Zhang
,
R.
,
Wang
,
Y.
, and
Qu
,
X.
,
2022
, “
Computational Materials Design: Composition Optimization to Develop Novel Ni-Based Single Crystal Superalloys
,”
Comput. Mater. Sci.
,
202
, p.
111021
.
87.
Kannan
,
S.
,
Pervaiz
,
S.
,
Klassen
,
R. J.
,
Huo
,
D.
, and
Haghshenas
,
M.
,
2021
, “
An Energy-Based Analysis for Machining Novel AZ91 Magnesium Composite Foam Dispersed With Ceramic Microspheres
,”
ASME J. Manuf. Sci. Eng.
,
143
(
3
), p.
031007
.
You do not currently have access to this content.