Abstract

Automated optical inspection (AOI) is increasingly advocated for in situ quality monitoring of additive manufacturing (AM) processes. The availability of layerwise imaging data improves the information visibility during fabrication processes and is thus conducive to performing online certification. However, few, if any, have investigated the high-speed contact image sensors (CIS) (i.e., originally developed for document scanners and multifunction printers) for AM quality monitoring. In addition, layerwise images show complex patterns and often contain hidden information that cannot be revealed in a single scale. A new and alternative approach will be to analyze these intrinsic patterns with multiscale lenses. Therefore, the objective of this article is to design and develop an AOI system with contact image sensors for multiresolution quality inspection of layerwise builds in additive manufacturing. First, we retrofit the AOI system with contact image sensors in industrially relevant 95 mm/s scanning speed to a laser-powder-bed-fusion (LPBF) machines. Then, we design the experiments to fabricate nine parts under a variety of factor levels (e.g., gas flow blockage, re-coater damage, laser power changes). In each layer, the AOI system collects imaging data of both recoating powder beds before the laser fusion and surface finishes after the laser fusion. Second, layerwise images are pre-preprocessed for alignment, registration, and identification of regions of interests (ROIs) of these nine parts. Then, we leverage the wavelet transformation to analyze ROI images in multiple scales and further extract salient features that are sensitive to process variations, instead of extraneous noises. Third, we perform the paired comparison analysis to investigate how different levels of factors influence the distribution of wavelet features. Finally, these features are shown to be effective in predicting the extent of defects in the computed tomography (CT) data of layerwise AM builds. The proposed framework of multiresolution quality inspection is evaluated and validated using real-world AM imaging data. Experimental results demonstrated the effectiveness of the proposed AOI system with contact image sensors for online quality inspection of layerwise builds in AM processes.

References

1.
Abdelrahman
,
M.
,
Reutzel
,
E. W.
,
Nassar
,
A. R.
, and
Starr
,
T. L.
,
2017
, “
Flaw Detection in Powder Bed Fusion Using Optical Imaging
,”
Addit. Manuf.
,
15
, pp.
1
11
.
2.
Imani
,
F.
,
Gaikwad
,
A.
,
Montazeri
,
M.
,
Rao
,
P.
,
Yang
,
H.
, and
Reutzel
,
E.
,
2018
, “
Layerwise In-Process Quality Monitoring in Laser Powder Bed Fusion
,”
13th International Manufacturing Science and Engineering Conference, Vol. 51357
,
College Station, TX
,
June 18–22
,
American Society of Mechanical Engineers
, p.
V001T01A038
.
3.
Yang
,
Z.
,
Lu
,
Y.
,
Yeung
,
H.
, and
Krishnamurty
,
S.
,
2020
, “
From Scan Strategy to Melt Pool Prediction: A Neighboring-Effect Modeling Method
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
5
), p.
051001
.
4.
Yang
,
Z.
,
Lu
,
Y.
,
Li
,
S.
,
Li
,
J.
,
Ndiaye
,
Y.
,
Yang
,
H.
, and
Krishnamurty
,
S.
,
2021
, “
In-Process Data Fusion for Process Monitoring and Control of Metal Additive Manufacturing
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol. 85376
,
Virtual, Online
,
Aug. 17–19
,
American Society of Mechanical Engineers
, p.
V002T02A072
.
5.
Khanzadeh
,
M.
,
Chowdhury
,
S.
,
Tschopp
,
M. A.
,
Doude
,
H. R.
,
Marufuzzaman
,
M.
, and
Bian
,
L.
,
2019
, “
In-Situ Monitoring of Melt Pool Images for Porosity Prediction in Directed Energy Deposition Processes
,”
IISE Trans.
,
51
(
5
), pp.
437
455
.
6.
Yao
,
B.
,
Imani
,
F.
, and
Yang
,
H.
,
2018
, “
Markov Decision Process for Image-Guided Additive Manufacturing
,”
IEEE Rob. Autom. Lett.
,
3
(
4
), pp.
2792
2798
.
7.
Lane
,
B.
,
Mekhontsev
,
S.
,
Grantham
,
S.
,
Vlasea
,
M. L.
,
Whiting
,
J.
,
Yeung
,
H.
,
Fox
,
J.
,
Zarobila
,
C.
,
Neira
,
J.
,
McGlauflin
,
M.
, and
Hanssen
,
L.
,
2016
, “
Design, Developments, and Results From the Nist Additive Manufacturing Metrology Testbed (AMMT)
,”
2016 International Solid Freeform Fabrication Symposium – An Additive Manufacturing Conference
,
Austin, TX
,
Aug. 8–10
,
University of Texas at Austin
.
8.
Lane
,
B.
,
Moylan
,
S.
,
Whitenton
,
E. P.
, and
Ma
,
L.
,
2016
, “
Thermographic Measurements of the Commercial Laser Powder Bed Fusion Process at NIST
,”
Rapid. Prototyp. J.
,
22
(
5
), pp.
778
787
.
9.
Nassar
,
A. R.
,
Reutzel
,
E. W.
,
Brown
,
S. W.
,
Morgan
,
J. P.
, Jr
,
Morgan
,
J. P.
,
Natale
,
D. J.
,
Tutwiler
,
R. L.
,
Feck
,
D. P.
, and
Banks
,
J. C.
,
2016
, “
Sensing for Directed Energy Deposition and Powder Bed Fusion Additive Manufacturing at PENN State University
,”
Laser 3D Manufacturing III, Vol. 9738
,
San Francisco, CA
,
Apr. 6
,
SPIE
, pp.
77
90
.
10.
Dunbar
,
A.
,
Denlinger
,
E.
,
Heigel
,
J.
,
Michaleris
,
P.
,
Guerrier
,
P.
,
Martukanitz
,
R.
, and
Simpson
,
T.
,
2016
, “
Development of Experimental Method for In Situ Distortion and Temperature Measurements During the Laser Powder Bed Fusion Additive Manufacturing Process
,”
Addit. Manuf.
,
12
(
Part A
), pp.
25
30
.
11.
Montazeri
,
M.
,
Yavari
,
R.
,
Rao
,
P.
, and
Boulware
,
P.
,
2018
, “
In-Process Monitoring of Material Cross-Contamination Defects in Laser Powder Bed Fusion
,”
ASME J. Manuf. Sci. Eng.
,
140
(
11
), p.
111001
.
12.
Yang
,
H.
,
Rao
,
P.
,
Simpson
,
T.
,
Lu
,
Y.
,
Witherell
,
P.
,
Nassar
,
A. R.
,
Reutzel
,
E.
, and
Kumara
,
S.
,
2020
, “
Six-Sigma Quality Management of Additive Manufacturing
,”
Proc. IEEE
,
109
(
4
), pp.
347
376
.
13.
McCann
,
R.
,
Obeidi
,
M. A.
,
Hughes
,
C.
,
Vijayaraghavan
,
R. K.
,
Joshi
,
A. M.
,
Garzon
,
V. A.
,
Dowling
,
D. P.
,
McNally
,
P. J.
, and
Brabazon
,
D.
,
2021
, “
In-Situ Sensing, Process Monitoring and Machine Control in Laser Powder Bed Fusion: A Review
,”
Addit. Manuf.
,
45
(
1
), p.
102058
.
14.
Lu
,
Q.
,
Grasso
,
M.
,
Le
,
T.-P.
, and
Seita
,
M.
,
2022
, “
Predicting Build Density in L-PBF Through In-Situ Analysis of Surface Topography Using Powder Bed Scanner Technology
,”
Addit. Manuf.
,
51
, p.
102626
.
15.
Le
,
T.-P.
, and
Seita
,
M.
,
2019
, “
A High-Resolution and Large Field-of-View Scanner for In-Line Characterization of Powder Bed Defects During Additive Manufacturing
,”
Mater. Des.
,
164
, p.
107562
.
16.
Caggiano
,
A.
,
Zhang
,
J.
,
Alfieri
,
V.
,
Caiazzo
,
F.
,
Gao
,
R.
, and
Teti
,
R.
,
2019
, “
Machine Learning-Based Image Processing for On-line Defect Recognition in Additive Manufacturing
,”
CIRP. Ann.
,
68
(
1
), pp.
451
454
.
17.
Yao
,
B.
,
Imani
,
F.
,
Sakpal
,
A. S.
,
Reutzel
,
E.
, and
Yang
,
H.
,
2018
, “
Multifractal Analysis of Image Profiles for the Characterization and Detection of Defects in Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
140
(
3
), p.
031014
.
18.
Imani
,
F.
,
Yao
,
B.
,
Chen
,
R.
,
Rao
,
P.
, and
Yang
,
H.
,
2019
, “
Joint Multifractal and Lacunarity Analysis of Image Profiles for Manufacturing Quality Control
,”
ASME J. Manuf. Sci. Eng.
,
141
(
4
), p.
044501
.
19.
Kan
,
C.
, and
Yang
,
H.
,
2017
, “
Dynamic Network Monitoring and Control of In Situ Image Profiles From Ultraprecision Machining and Biomanufacturing Processes
,”
Qual. Reliab. Eng. Int.
,
33
(
8
), pp.
2003
2022
.
20.
Imani
,
F.
,
Chen
,
R.
,
Diewald
,
E.
,
Reutzel
,
E.
, and
Yang
,
H.
,
2019
, “
Deep Learning of Variant Geometry in Layerwise Imaging Profiles for Additive Manufacturing Quality Control
,”
ASME J. Manuf. Sci. Eng.
,
141
(
11
), p.
111001
.
21.
Yazdi
,
R. M.
,
Imani
,
F.
, and
Yang
,
H.
,
2020
, “
A Hybrid Deep Learning Model of Process-Build Interactions in Additive Manufacturing
,”
J. Manuf. Syst.
,
57
, pp.
460
468
.
22.
Liu
,
R.
,
Vogt
,
B. D.
, and
Yang
,
H.
,
2021
, “
Gaussian Process Monitoring of Layerwise-Dependent Imaging Data
,”
IEEE Rob. Autom. Lett.
,
6
(
4
), pp.
8029
8036
.
23.
Yang
,
H.
,
Zhang
,
S.
,
Lu
,
Y.
,
Witherell
,
P.
, and
Kumara
,
S.
,
2022
, “
Spatiotemporal Monitoring of Melt-Pool Variations in Metal-Based Additive Manufacturing
,”
IEEE Rob. Autom. Lett.
,
7
(
3
), pp.
8249
8256
.
24.
Liu
,
R.
, and
Yang
,
H.
,
2023
, “
Multimodal Probabilistic Modeling of Melt Pool Geometry Variations in Additive Manufacturing
,”
Addit. Manuf.
,
61
, p.
103375
.
25.
Yang
,
H.
,
Bukkapatnam
,
S.
, and
Komanduri
,
R.
,
2007
, “
Nonlinear Adaptive Wavelet Analysis of Electrocardiogram Signals
,”
Phys. Rev. E
,
76
(
2
), p.
026214
.
26.
Yang
,
H.
,
2010
, “
Multiscale Recurrence Quantification Analysis of Spatial Cardiac Vectorcardiogram Signals
,”
IEEE Trans. Biomed. Eng.
,
58
(
2
), pp.
339
347
.
27.
Liu
,
G.
, and
Yang
,
H.
,
2013
, “
Multiscale Adaptive Basis Function Modeling of Spatiotemporal Vectorcardiogram Signals
,”
IEEE J. Biomed. Health Inform.
,
17
(
2
), pp.
484
492
.
You do not currently have access to this content.