Abstract

The fluoride-assisted galvanic replacement reaction is a conventional method for fabricating metallic dendrites on silicon wafers. However, whether bubbles affect manufacturing metallic dendrites is unclear. This study investigated the effects of bubbles on manufacturing Au dendrites and silicon nanowires through metal-assisted chemical etching. The results of manufacture under three conditions (standard, shaking, and vacuum conditions) were compared. Synchronous growth of Au dendrites and silicon nanowires were observed on the silicon wafers. The Au dendrite deposition rate was higher than the silicon etching rate. Compared with the standard condition, the vacuum condition increased the synthesis rates of Au dendrites and silicon nanowires by 1.1 and 0.2 μm/min, respectively. Therefore, the elimination of bubbles by vacuum can considerably accelerate manufacturing Au dendrites and silicon nanowires.

References

1.
Khakbiz
,
M.
,
Shakibania
,
S.
,
Ghazanfari
,
L.
,
Zhao
,
S.
,
Tavakoli
,
M.
, and
Chen
,
Z.
,
2023
, “
Engineered Nanoflowers, Nanotrees, Nanostars, Nanodendrites and Nanoleaves for Biomedical, Applications
,”
Nanotechnol. Rev.
,
12
(
1
), p.
20220523
.
2.
Shiao
,
M. H.
,
Zeng
,
J. J.
,
Huang
,
H. J.
,
Liao
,
B. H.
,
Tang
,
Y. H.
, and
Lin
,
Y. S.
,
2019
, “
Growth of Gold Dendritic Nanoforests on Titanium Nitride-Coated Silicon Substrates
,”
J. Vis. Exp.
,
148
, p.
e59603
. doi:10.3791/59603
3.
Huang
,
H. J.
,
Chang
,
H. W.
,
Lee
,
C. Y.
,
Shiao
,
M. H.
,
Chiu
,
Y. L.
,
Lee
,
P. Y.
, and
Lin
,
Y. S.
,
2022
, “
Effect of Synthesis Time on Plasmonic Properties of Ag Dendritic Nanoforests
,”
IUCrJ
,
9
(
3
), pp.
355
363
.
4.
Yang
,
Y.
,
Mao
,
H.
,
Xiong
,
J.
,
Jia
,
Y.
,
Li
,
R.
, and
Wang
,
W.
,
2018
, “
Optical Features of Nanowire Forests Prepared by a Plasma Repolymerization Technique
,”
IEEE Trans. Nanotechnol.
,
17
(
4
), pp.
719
722
.
5.
Shiao
,
M. H.
,
Lin
,
C. T.
,
Huang
,
H. J.
,
Chen
,
P. H.
,
Liao
,
B. H.
,
Tseng
,
F. G.
, and
Lin
,
Y. S.
,
2018
, “
Novel Gold Dendritic Nanoflowers Deposited on Titanium Nitride for Photoelectrochemical Cells
,”
J. Solid State Electrochem.
,
22
(
10
), pp.
3077
3084
.
6.
Shiao
,
M. H.
,
Lin
,
C. T.
,
Zeng
,
J. J.
, and
Lin
,
Y. S.
,
2018
, “
Novel Gold Dendritic Nanoforests Combined With Titanium Nitride for Visible-Light-Enhanced Chemical Degradation
,”
Nanomaterials
,
8
(
5
), p.
282
.
7.
Huang
,
H. J.
,
Chang
,
H. W.
,
Lin
,
Y. W.
,
Chuang
,
S. Y.
,
Lin
,
Y. S.
, and
Shiao
,
M. H.
,
2020
, “
Silicon-Based Ag Dendritic Nanoforests for Light-Assisted Bacterial Inhibition
,”
Nanomaterials
,
10
(
11
), p.
2244
.
8.
Huang
,
H. J.
,
Shiao
,
M. H.
,
Lin
,
Y. W.
,
Lin
,
B. J.
,
Su
,
J.
,
Lin
,
Y. S.
, and
Chang
,
H. W.
,
2021
, “
Au@Ag Dendritic Nanoforests for Surface-Enhanced Raman Scattering Sensing
,”
Nanomaterials
,
11
(
7
), p.
1736
.
9.
Shiao
,
M. H.
,
Wu
,
T.
,
Huang
,
H. J.
,
Peng
,
C. Y.
,
Lin
,
Y. S.
,
Lai
,
T. Y.
, and
Lin
,
Y. W.
,
2021
, “
Dendritic Forest-Like Ag Nanostructures Prepared Using Fluoride-Assisted Galvanic Replacement Reaction for SERS Applications
,”
Nanomaterials
,
11
(
6
), p.
1359
.
10.
Huang
,
H. J.
,
Chiang
,
Y. C.
,
Hsu
,
C. H.
,
Chen
,
J. J.
,
Shiao
,
M. H.
,
Yeh
,
C. C.
, and
Lin
,
Y. S.
,
2020
, “
Light Energy Conversion Surface With Gold Dendritic Nanoforests/Si Chip for Plasmonic Polymerase Chain Reaction
,”
Sensors
,
20
(
5
), p.
1293
.
11.
Cai
,
W. F.
,
Pu
,
K.
,
Ma
,
Q. B.
, and
Wang
,
Y. H.
,
2017
, “
Insight Into the Fabrication and Perspective of Dendritic Ag Nanostructures
,”
J. Exp. Nanosci.
,
12
(
1
), pp.
319
337
.
12.
Liang
,
L.
,
He
,
Y.
,
Song
,
H.
,
Yang
,
X.
, and
Cai
,
X.
,
2014
, “
Effect of Placement of Aluminium Foil on Growth of Etch Tunnels During DC Etching
,”
Corros. Sci.
,
79
, pp.
21
28
.
13.
To
,
W. K.
,
Tsang
,
C. H.
,
Li
,
H. H.
, and
Huang
,
Z.
,
2011
, “
Fabrication of N-Type Mesoporous Silicon Nanowires by One-Step Etching
,”
Nano Lett.
,
11
(
12
), pp.
5252
5258
.
14.
Huang
,
Z.
,
Geyer
,
N.
,
Werner
,
P.
,
De Boor
,
J.
, and
Gösele
,
U.
,
2011
, “
Metal-Assisted Chemical Etching of Silicon: A Review: In Memory of Prof. Ulrich Gösele
,”
Adv. Mater.
,
23
(
2
), pp.
285
308
.
15.
Lee
,
P. Y.
,
Weng
,
C. J.
,
Huang
,
H. J.
,
Wu
,
L. Y.
,
Lu
,
G. H.
,
Liu
,
C. F.
,
Chen
,
C. Y.
,
Li
,
T. Y.
, and
Lin
,
Y. S.
,
2023
, “
Bubble Effects on Manufacturing of Silicon Nanowires by Metal-Assisted Chemical Etching
,”
ASME J. Manuf. Sci. Eng.
,
145
(
9
), p.
094501
.
16.
Leonardi
,
A. A.
,
Faro
,
M. J. L.
, and
Irrera
,
A.
,
2021
, “
Silicon Nanowires Synthesis by Metal-Assisted Chemical Etching: A Review
,”
Nanomaterials
,
11
(
2
), p.
383
.
17.
Dawood
,
M. K.
,
Tripathy
,
S.
,
Dolmanan
,
S. B.
,
Ng
,
T. H.
,
Tan
,
H.
, and
Lam
,
J.
,
2012
, “
Influence of Catalytic Gold and Silver Metal Nanoparticles on Structural, Optical, and Vibrational Properties of Silicon Nanowires Synthesized by Metal-Assisted Chemical Etching
,”
J. Appl. Phys.
,
112
(
7
), p.
073509
.
18.
Chen
,
C. Y.
,
Liu
,
Y. R.
,
Tseng
,
J. C.
, and
Hsu
,
P. Y.
,
2015
, “
Uniform Trench Arrays With Controllable Tilted Profiles Using Metal-Assisted Chemical Etching
,”
Appl. Surf. Sci.
,
333
, pp.
152
156
.
19.
Li
,
Y.
, and
Duan
,
C.
,
2015
, “
Bubble-Regulated Silicon Nanowire Synthesis on Micro-Structured Surfaces by Metal-Assisted Chemical Etching
,”
Langmuir
,
31
(
44
), pp.
12291
12299
.
20.
Kochylas
,
I.
,
Gardelis
,
S.
,
Likodimos
,
V.
,
Giannakopoulos
,
K. P.
,
Falaras
,
P.
, and
Nassiopoulou
,
A. G.
,
2021
, “
Improved Surface-Enhanced-Raman Scattering Sensitivity Using Si Nanowires/Silver Nanostructures by a Single Step Metal-Assisted Chemical Etching
,”
Nanomaterials
,
11
(
7
), p.
1760
.
21.
Qiu
,
T.
,
Wu
,
X. L.
,
Siu
,
G. G.
, and
Chu
,
P. K.
,
2006
, “
Intergrowth Mechanism of Silicon Nanowires and Silver Dendrites
,”
J. Electron. Mater.
,
35
(
10
), pp.
1879
1884
.
You do not currently have access to this content.