Abstract

This paper studies the effects of plasma-induced cracks on rock cutting to support the concept of a plasma-integrated drag bit for accelerated geothermal drilling through hard rocks. For this, a single polycrystalline diamond compact (PDC) drilling technique is used in cutting granite to compare thrust and cutting forces between plasma-treated and untreated rock samples. The cracks are produced using underwater plasma at 80 J per pulse. This energy level does not produce visible damage to the rock. The cutting tests are conducted at a cutting speed of 12.7 m/min and four feed rates of 0.127, 0.201, 0.267, and 0.414 mm/s to represent actual drilling scenarios. The results show a general trend of reduction in both thrust and cutting forces for these feed rates, but the magnitude of reduction highly depends on the feed rate. The maximum force reduction of around 50% is found at the 0.267 mm/s feed rate with statistical significance. Cases with a higher force reduction are also found to have rougher surface topography, which indicates more excessive fracturing and, thus, a cracks-accelerated material removal process. This study provides initial evidence of using underwater plasma to increase the downhole drilling rate of hard rocks.

References

1.
Kutscher
,
C.
,
2000
, “
The Status and Future of Geothermal Electric Power
,”
American Solar Energy Society Conference
,
Madison, WI
,
June 16–21
.
2.
Fridleifsson
,
I. B.
,
2001
, “
Geothermal Energy for the Benefit of the People
,”
Renewable Sustainable Energy Rev.
,
5
(
3
), pp.
299
312
.
3.
Dunn
,
J. C.
, and
Livesay
,
B. J.
,
1986
, “
Geothermal Drilling Technology
,” Sandia Report, (May).
4.
Wakhyudin
,
A.
,
Setiawan
,
D.
, and
Dwi Marjuan
,
O.
,
2017
, “
Aerated Drilling Cutting Transport Analysis in Geothermal Well
,”
IOP Conference Series: Earth and Environmental Science
,
Bandung, Indonesia
,
Mar. 22–23
.
5.
Pierce
,
K. G.
, and
Livesay
,
B. J.
,
1994
, “
A Study of Geothermal Drilling and the Production of Electricity From Geothermal Energy
,” Sandia Report, (January).
6.
Santos
,
H.
,
Placido
,
J.
,
Oliveira
,
J. E.
, and
Gamboa
,
L.
,
2000
, “
Overcoming Hard Rock Drilling Challenges
,”
IADC/SPE Drilling Conference
,
New Orleans, LA
,
Feb. 23
, OnePetro.
7.
Saadati
,
M.
,
Forquin
,
P.
,
Weddfelt
,
K.
,
Larsson
,
P.-L.
, and
Hild
,
F.
,
2015
, “
A Numerical Study of the Influence From Pre-Existing Cracks on Granite Rock Fragmentation at Percussive Drilling
,”
Int. J. Numer. Anal. Methods Geomech.
,
39
(
5
), pp.
558
570
.
8.
Liu
,
S.
,
Li
,
H.
, and
Chang
,
H.
,
2017
, “
Drilling Performance of Rock Drill by High-Pressure Water Jet Under Different Configuration Modes
,”
Shock Vib.
,
2017
(
1
), p.
14
.
9.
Kant
,
M.
,
Rossi
,
E.
,
Becker
,
D.
, and
Rohr
,
P. v.
,
2017
, “
Enhancing the Drilling Process for Geothermal Resources by Combining Conventional Drilling and the Spallation Technology
,”
Proceedings of 42nd Workshop on Geothermal Reservoir Engineering
,
Stanford, CA
,
Feb. 13–15
.
10.
Buckstegge
,
F.
,
Michel
,
T.
,
Zimmermann
,
M.
,
Roth
,
S.
, and
Schmidt
,
M.
,
2016
, “
Advanced Rock Drilling Technologies Using High Laser Power
,”
Phys. Procedia
,
83
, pp.
336
343
.
11.
Wiercigroch
,
M.
,
Wojewoda
,
J.
, and
Krivtsov
,
A. M.
,
2005
, “
Dynamics of Ultrasonic Percussive Drilling of Hard Rocks
,”
J. Sound Vib.
,
280
(
3
), pp.
739
757
.
12.
Yu
,
Z.
,
Zhao
,
D.
,
Tang
,
Q.
, and
Wang
,
M.
,
2020
, “
Experimental and Numerical Investigation of the Fatigue Behaviour and Crack Evolution Mechanism of Granite Under Ultra-High-Frequency Loading
,”
R. Soc. Open Sci.
,
7
(
4
), p.
200091
.
13.
Ghasemloonia
,
A.
,
Geoff Rideout
,
D.
, and
Butt
,
S. D.
,
2013
, “
Vibration Analysis of a Drillstring in Vibration-Assisted Rotary Drilling: Finite Element Modeling With Analytical Validation
,”
ASME J. Energy Resour. Technol.
,
135
(
3
), p.
032902
.
14.
Kocis
,
I.
,
Kristofic
,
T.
,
Gebura
,
M.
,
Horvath
,
G.
,
Gajdos
,
M.
, and
Stofanik
,
V.
,
2017
, “
Novel Deep Drilling Technology Based on Electric Plasma Developed in Slovakia
,”
2017 32nd General Assembly and Scientific Symposium of the International Union of Radio Science
,
Montreal, Canada
,
Aug. 19–26
, pp.
1
4
.
15.
Li
,
C.
,
Duan
,
L.
,
Tan
,
S.
, and
Chikhotkin
,
V.
,
2018
, “
Influences on High-Voltage Electro Pulse Boring in Granite
,”
Energies
,
11
(
9
), p.
2461
.
16.
Schiegg
,
H. O.
,
Rødland
,
A.
,
Zhu
,
G.
, and
Yuen
,
D. A.
,
2015
, “
Electro-Pulse-Boring (EPB): Novel Super-Deep Drilling Technology for Low Cost Electricity
,”
J. Earth Sci.
,
26
(
1
), pp.
37
46
.
17.
Vogel
,
A.
,
Busch
,
S.
, and
Parlitz
,
U.
,
1996
, “
Shock Wave Emission and Cavitation Bubble Generation by Picosecond and Nanosecond Optical Breakdown in Water
,”
J. Acoust. Soc. Am.
,
100
(
1
), pp.
148
165
.
18.
Oshita
,
D.
,
Hosseini
,
S.
,
Miyamoto
,
Y.
,
Mawatari
,
K.
, and
Akiyama
,
H.
,
2013
, “
Study of Underwater Shock Waves and Cavitation Bubbles Generated by Pulsed Electric Discharges
,”
IEEE Trans. Dielectr. Electr. Insul.
,
20
(
4
), pp.
1273
1278
.
19.
Lisitsyn
,
I. V.
,
Inoue
,
H.
,
Katsuki
,
S.
,
Akiyama
,
H.
, and
Nishizawa
,
I.
,
1999
, “
Drilling and Demolition of Rocks by Pulsed Power
,”
Digest of Technical Papers. 12th IEEE International Pulsed Power Conference
,
Monterey, CA
,
June 27–30
, pp.
169
172
.
20.
Akhter
,
M.
,
Mallams
,
J.
,
Tang
,
X.
, and
Staack
,
D.
,
2021
, “
Underwater Plasma Breakdown Characteristics With Respect to Highly Pressurized Drilling Applications
,”
J. Appl. Phys.
,
129
(
18
), p.
183309
.
21.
Kazi
,
A.
,
Riyaz
,
M.
,
Tang
,
X.
,
Staack
,
D.
, and
Tai
,
B.
,
2020
, “
Specific Cutting Energy Reduction of Granite Using Plasma Treatment: A Feasibility Study for Future Geothermal Drilling
,”
Procedia Manuf.
,
48
(
5
), pp.
514
519
.
22.
Staack
,
D.
,
Tai
,
L.-J.
,
Antao
,
D. S.
, and
Tang
,
X.
,
2020
, “
Systems and Methods for Forming a Subterranean Borehole
”.
23.
Kazi
,
A.
,
Kao
,
Y.-T.
, and
Tai
,
B. L.
,
2021
, “
Comparison of Rotary and Linear Cutting Methodology in Determining Specific Cutting Energy of Granite
,”
ASME J. Manuf. Sci. Eng.
,
143
(
11
), p.
111002
.
24.
Hareland
,
G.
,
Yan
,
W.
,
Nygaard
,
R.
, and
Wise
,
J. L.
,
2007
, “
Cutting Efficiency of a Single PDC Cutter on Hard Rock
,”
Canadian International Petroleum Conference
,
Calgary, Alberta
,
June 1
, p.
11
.
25.
Glowka
,
D. A.
,
1989
, “
Use of Single-Cutter Data in the Analysis of PDC Bit Designs: Part 1—Development of a PDC Cutting Force Model
,”
J. Pet. Technol.
,
41
(
08
), pp.
797
849
.
26.
Zisling
,
D. H.
,
1987
, “
Single Cutter Testing—A Key For PDC Bit Development
,”
SPE Offshore Europe
,
Aberdeen, United Kingdom
,
September 8 - 11
.
27.
Lokajicek
,
T.
,
Vasin
,
R.
,
Svitek
,
T.
,
Petružálek
,
M.
,
Kotrlý
,
M.
,
Turková
,
I.
,
Onysko
,
R.
, and
Wenk
,
H. R.
,
2021
, “
Intrinsic Elastic Anisotropy of Westerly Granite Observed by Ultrasound Measurements, Microstructural Investigations, and Neutron Diffraction
,”
J. Geophys. Res. Solid Earth
,
126
(
1
), pp.
1
23
.
28.
Tang
,
X.
,
Akhter
,
M. R.
,
Mallams
,
J.
,
Kao
,
Y.-T.
,
Kazi
,
A.
,
Kumar
,
S.
,
Antao
,
D.
,
Tai
,
B. L.
, and
Staack
,
D.
,
2022
, “
Shock and Plasma Accelerated Rock Cracking for Geothermal Drilling
,”
Renewable Sustainable Energy Rev.
, In Review.
29.
Walsh
,
J. B.
,
1965
, “
The Effect of Cracks in Rocks on Poisson’s Ratio
,”
J. Geophys. Res.
,
70
(
20
), pp.
5249
5257
.
30.
Imaizumi
,
H.
,
Ohno
,
T.
,
Karasawa
,
H.
,
Miyazaki
,
K.
, and
Akhmadi
,
E.
,
2019
, “
Drilling Performance of PDC Bits for Geothermal Well Development in Field Experiments
,”
Proceedings of 44th Workshop Geothermal Reservoir Engineering
,
Stanford, CA
,
Feb. 11–13
, pp.
1
15
.
31.
Fink
,
J.
,
2015
, “Chapter 1—Drilling Muds,”
Petroleum Engineer’s Guide to Oil Field Chemicals and Fluids
, 2nd ed.,
J
Fink
, ed.,
Gulf Professional Publishing
,
Boston, MA
, pp.
1
61
.
32.
Toraman
,
S.
, and
Sensogut
,
C.
,
2018
, “
Rock Bit Application Parameters in Geothermal Drilling Works and Cost Analysis
,”
4th International Conference on Engineering and Natural Sciences
,
Kiev, Ukraine
,
May 2–6
.
33.
Medapati
,
R. S.
,
Kreidl
,
O. P.
,
MacLaughlin
,
M.
,
Hudyma
,
N.
, and
Harris
,
A.
,
2013
, “
Quantifying Surface Roughness of Weathered Rock—Examples From Granite and Limestone
,”
Geo-Congress 2013: Stability and Performance of Slopes and Embankments III
,
San Diego, CA
,
Mar. 3–7
, pp.
120
128
.
34.
McCarroll
,
D.
, and
Nesje
,
A.
,
1996
, “
Rock Surface Roughness as an Indicator of Degree of Rock Surface Weathering
,”
Earth Surf. Process. Landforms
,
21
(
10
), pp.
963
977
.
35.
Shaw
,
M.
,
2003
, “
The Size Effect in Metal Cutting
,”
Sadhana
,
28
(
5
), pp.
875
896
.
36.
Zhang
,
Z.
,
Kou
,
S. Q.
,
Jiang
,
L. G.
, and
Lindqvist
,
P. A.
,
2000
, “
Effects of Loading Rate on Rock Fracture: Fracture Characteristics and Energy Partitioning
,”
Int. J. Rock Mech. Min. Sci.
,
37
(
5
), pp.
745
762
.
37.
Chen
,
X.
,
Yang
,
J.
, and
Gao
,
D.
,
2018
, “
Drilling Performance Optimization Based on Mechanical Specific Energy Technologies
,”
Drilling
,
1
(
1
), pp.
133
162
.
38.
Mogi
,
K.
,
2006
,
Experimental Rock Mechanics
,
CRC Press
,
Boca Raton, FL
, pp.
1
378
.
39.
Bohnsack
,
D.
,
Potten
,
M.
,
Freitag
,
S.
,
Einsiedl
,
F.
, and
Zosseder
,
K.
,
2021
, “
Stress Sensitivity of Porosity and Permeability Under Varying Hydrostatic Stress Conditions for Different Carbonate Rock Types of the Geothermal Malm Reservoir in Southern Germany
,”
Geotherm. Energy
,
9
(
1
), p.
15
.
40.
Zhao
,
Y. S.
,
Feng
,
Z. J.
,
Xi
,
B. P.
,
Yang
,
D.
,
Liang
,
W. G.
, and
Wan
,
Z. J.
,
2017
, “
Limit of Crustal Drilling Depth
,”
J. Rock Mech. Geotech. Eng.
,
9
(
5
), pp.
989
992
.
You do not currently have access to this content.