Abstract

Toward achieving control over the kerfing through macro abrasive waterjet submerged milling, there is a need (i) to understand the influence of the water column height on the kerf quality and (ii) to develop a model for the prediction of the kerf characteristics. This study performs detailed experimentation to assess the kerf quality enhancement in submerged milling relative to the in-air milling on Al-6061 alloy. From the modeling perspective, there are very limited efforts in developing a comprehensive model that includes both the jet flow dynamics and material removal models—this is the missing link. Toward this, a comprehensive model is proposed and validated for the prediction of kerf in in-air and submerged conditions by considering (i) jet dynamics and (ii) jet–material interaction. From the experimental results, it is observed that by adopting the submerged milling, the damaged region, top kerf width and edge radius got reduced by 20.3%, 13.53%, and 22.7%, respectively. However, this enhancement in the kerf quality is associated with a reduction in the centerline erosion depth (hmax) by 12.33% and a material removal rate by 24.52%. The material removal mechanism is more uniform and directed in the submerged milling, whereas in-air is random. The proposed model predicted the kerf cross-sectional profile in submerged milling and in-air with a mean absolute error of 60 µm and 57 µm, squared Pearson correlation coefficient of 0.97 and 0.99, and the hmax with a maximum error of 1.3% and 1.4%.

References

1.
Folkes
,
J.
,
2009
, “
Waterjet-An Innovative Tool for Manufacturing
,”
J. Mater. Process. Technol.
,
209
(
20
), pp.
6181
6189
.
2.
Cashman
,
M.
,
Ramirez
,
S.
,
Soo
,
S.
,
Shepherd
,
D.
, and
Rabani
,
A.
,
2013
, “
Abrasive Water Jet Cutting (AWJC) of Co-Cr-Mo Alloy Investment Castings in the Medical Device Industry
,”
Proceedings of the Water Jet Technology Association-Industrial & Municipal Cleaning Association (WJTA-IMCA) Conference and Expo 2013
,
Houston, TX
,
Sept. 9–11
, pp.
1
15
.
3.
Biskup
,
C.
,
Hepke
,
M.
,
Grittner
,
N.
,
Hassel
,
T.
,
Bormann
,
D.
,
Hoyer
,
P.
,
Schilling
,
T.
, et al
,
2009
, “
Testing of Stabilizing Structures Made of Magnesium Alloys for the Cardiovascular Surgery
,”
Proceedings of the 8th International Conference on Magnesium Alloys and Their Applications.
,
Weimar, Germany
,
Oct. 25–28
.
4.
Ruiz-Garcia
,
R.
,
Ares
,
P. F. M.
,
Vazquez-Martinez
,
J. M.
, and
Gómez
,
J. S.
,
2018
, “
Influence of Abrasive Waterjet Parameters on the Cutting and Drilling of CFRP/UNS A97075 and UNS A97075/CFRP Stacks
,”
Materials (Basel)
,
12
(
1
), p.
107
.
5.
Liu
,
H. T.
,
2015
, “
Novel Processes for Improving Precision of Abrasive
,”
Proceedings of the American WJTA-IMCA Conference and Expo
,
New Orleans, LA
,
Nov. 2–4
.
6.
Fowler
,
G.
,
2003
, “
Abrasive Water-Jet: Controlled Depth Milling of Titanium Alloys
,” PhD thesis, University of Nottingham, Nottingham, UK.
7.
Faltin
,
F.
,
Flögel
,
K.
, and
Uhlmann
,
E.
,
2015
, “
3D Near Net Shaping of Hard To Machine Materials Via Abrasive Waterjet Controlled-Depth Milling
,”
WJTA-IMCA Conference and Expo
,
New Orleans, LA
,
Nov. 2–4
.
8.
Farayibi
,
P. K.
,
Murray
,
J. W.
,
Huang
,
L.
,
Boud
,
F.
,
Kinnell
,
P. K.
, and
Clare
,
A. T.
,
2014
, “
Erosion Resistance of Laser Clad Ti-6Al-4 V/WC Composite for Waterjet Tooling
,”
J. Mater. Process. Technol.
,
214
(
3
), pp.
710
721
.
9.
Miles
,
P. J.
,
1998
, “
Lightweighting Large Optics With Abrasive Waterjets
,”
Novel Optical Systems and Large-Aperture Imaging
,
San Diego, CA
,
Dec. 8
.
10.
Srinivasu
,
D. S.
, and
Axinte
,
D. A.
,
2014
, “
Mask-Less Pocket Milling of Composites by Abrasive Waterjets: An Experimental Investigation
,”
ASME J. Manuf. Sci. Eng.
,
136
(
4
), p.
041005
.
11.
Kong
,
M. C.
,
Axinte
,
D.
, and
Voice
,
W.
,
2011
, “
An Innovative Method to Perform Maskless Plain Waterjet Milling for Pocket Generation: A Case Study in Ti-Based Superalloys
,”
Int. J. Mach. Tools Manuf.
,
51
(
7–8
), pp.
642
648
.
12.
Liu
,
H. X.
,
Shao
,
Q. M.
,
Kang
,
C.
, and
Gong
,
C.
,
2015
, “
Assessment of Cavitation and Impingement Effects of Submerged Water Jet on Ti Alloy Surface
,”
Mater. Res. Innov.
,
19
(
S1
), pp.
S1-70
S1-74
.
13.
Kang
,
C.
,
Liu
,
H.
,
Li
,
X.
, and
Cheng
,
X.
,
2015
, “
Cavitation in Submerged Water Jet at High Jet Pressure
,”
Proceedings of the ASME/JSME/KSME 2015 Joint Fluids Engineering Conference AJKFluids 2015
,
Seoul, South Korea
,
July 26–31
, Vol. 2, pp.
1
5
.
14.
Narkhede
,
M.
, and
James
,
S.
,
2018
, “
Experimental Study on Machining of Hybrid Composite Stacks Using Submerged Abrasive Waterjet Machining Process
,”
Proceedings of the ASME International Mechanical Engineering Congress and Exposition
,
Pittsburgh, PA
,
Nov. 9–15
, Vol. 2, pp.
1
4
.
15.
James
,
S.
, and
Mahajan
,
A.
,
2018
, “
Experimental Study of Machining of Smart Materials Using Submerged Abrasive Waterjet Micromachining Process
,”
Proceedings of the ASME 2018 International Manufacturing Science and Engineering Conference
,
College Station, TX
,
June 18–22
, Vol. 4, pp.
1
8
.
16.
Haghbin
,
N.
,
Spelt
,
J. K.
, and
Papini
,
M.
,
2015
, “
Abrasive Waterjet Micro-Machining of Channels in Metals: Comparison Between Machining in Air and Submerged in Water
,”
Int. J. Mach. Tools Manuf.
,
88
, pp.
108
117
.
17.
Haghbin
,
N.
,
Spelt
,
J. K.
, and
Papini
,
M.
,
2015
, “
Abrasive Waterjet Micro-Machining of Channels in Metals: Model to Predict High Aspect-Ratio Channel Profiles for Submerged and Unsubmerged Machining
,”
J. Mater. Process. Technol.
,
222
, pp.
399
409
.
18.
Momber
,
A.
,
2005
,
Hydrodemolition Concrete Surfaces and Reinforced Concrete
, 1st ed.,
Elsevier Science
,
Amsterdam, Netherlands
.
19.
Roth
,
P.
,
Looser
,
H.
, and
Heiniger
,
K. C.
,
2005
, “
Determination of Abrasive Particle Velocity Using Laser-Induced Fluorescence and Particle Tracking Methods in Abrasive Water Jets
,”
American Waterjet Conference WJTA
,
Houston, TX
,
Aug. 21–23
.
20.
Balz
,
R.
, and
Heiniger
,
K. C.
,
2011
, “
Determination of Spatial Velocity Distributions of Abrasive Particles in Abrasive Water Jets Using Laser-Induced Fluorescence Under Real Conditions
,”
Proceedings of 16th WJTA-IMCA Conference and Expo
,
Houston, TX
,
Sept. 19–21
.
21.
Balz
,
R.
,
Mokso
,
R.
,
Narayanan
,
C.
,
Weiss
,
D. A.
, and
Heiniger
,
K. C.
,
2013
, “
Ultra-Fast X-Ray Particle Velocimetry Measurements Within an Abrasive Water Jet
,”
Exp. Fluids
,
54
(
3
).
22.
Haghbin
,
N.
,
Khakpour
,
A.
, and
Papini
,
M.
,
2019
, “
Measurement of Abrasive Particle Velocity and Size Distribution in High Pressure Abrasive Slurry and Water Micro-Jets Using a Modified Dual Disc Anemometer
,”
J. Mater. Process. Technol.
,
263
, pp.
164
175
.
23.
Bain
,
G. J.
, and
Raj
,
D. S.
,
2022
, “
Effect of EDMed Rake Face Grooves on the Chip Breaking Capability of Twist Drills During Deep Hole Drilling of Al 6061 Aluminum Alloy
,”
Mater. Manuf. Process.
,
37
(
9
), pp.
1052
1072
.
24.
Uddin
,
M.
,
Basak
,
A.
,
Pramanik
,
A.
,
Singh
,
S.
,
Krolczyk
,
G. M.
, and
Prakash
,
C.
,
2018
, “
Evaluating Hole Quality in Drilling of Al 6061 Alloys
,”
Materials (Basel)
,
11
(
12
), p.
2443
.
25.
Paynter
,
R.
,
Mahmoudi
,
A. H.
,
Pavier
,
M. J.
,
Hills
,
D. A.
,
Nowell
,
D.
,
Truman
,
C. E.
, and
Smith
,
D. J.
,
2009
, “
Residual Stress Measurement by Deep Hole Drilling and Trepanning—Analysis With Distributed Dislocations
,”
J. Strain Anal. Eng. Des.
,
44
(
1
), pp.
45
54
.
26.
Hashish
,
M.
,
2003
, “
Inside AWJ Nozzles
,”
WJTA American Waterjet Conference
,
Houston, TX
,
Aug. 17–19
.
27.
Singh
,
N. P.
,
Srinivasu
,
D. S.
, and
Ramesh Babu
,
N.
,
2021
, “
Modelling of Abrasive Waterjet Kerf in a Double-Layered Structure
,”
J. Manuf. Process.
,
69
, pp.
514
531
.
28.
Wen
,
J.
,
Chen
,
C.
, and
Campos
,
U.
,
2018
, “
Experimental Research on the Performances of Water Jet Devices and Proposing the Parameters of Borehole Hydraulic Mining for Oil Shale
,”
PLoS One
,
13
(
6
), p.
e0199027
.
29.
Anirban
,
G.
,
Barron
,
R. M.
, and
Balachandar
,
R.
,
2010
, “
Numerical Simulation of High-Speed Turbulent Water Jets in Air
,”
J. Hydraul. Res.
,
48
(
1
), pp.
119
124
.
30.
Rajaratnam
,
N.
,
Rizvi
,
S. A. H.
,
Steffler
,
P. M.
, and
Smy
,
P. R.
,
1994
, “
An Experimental Study of Very High Velocity Circular Water Jets in Air: Etude Expérimental de Jets D’eau Circulaires à Trés Grande Vitesse Émis Dans l’air
,”
J. Hydraul. Res.
,
32
(
3
), pp.
461
470
.
31.
Rajaratnam
,
N.
, and
Albers
,
C.
,
1998
, “
Water Distribution in Very High Velocity Water Jets in Air
,”
J. Hydraul. Eng.
,
124
(
6
), pp.
647
650
.
32.
Narayanan
,
C.
,
Balz
,
R.
,
Weiss
,
D. A.
, and
Heiniger
,
K. C.
,
2013
, “
Modelling of Abrasive Particle Energy in Water Jet Machining
,”
J. Mater. Process. Technol.
,
213
(
12
), pp.
2201
2210
.
33.
Melentiev
,
R.
, and
Fang
,
F.
,
2019
, “
Theoretical Study on Particle Velocity in Micro-Abrasive Jet Machining
,”
Powder Technol.
,
344
, pp.
121
132
.
34.
Guha
,
A.
,
Barron
,
R. M.
, and
Balachandar
,
R.
,
2011
, “
An Experimental and Numerical Study of Water Jet Cleaning Process
,”
J. Mater. Process. Technol.
,
211
(
4
), pp.
610
618
.
35.
Srinivasu
,
D. S.
, and
Axinte
,
D.
,
2011
, “
An Analytical Model for Top Width of Jet Footprint in Abrasive Waterjet Milling: A Case Study on SiC Ceramics
,”
Proc. Inst. Mech. Eng. Part B J. Eng. Manuf.
,
225
(
3
), pp.
319
335
.
36.
Thongkaew
,
K.
,
Wang
,
J.
, and
Yeoh
,
G. H.
,
2019
, “
Impact Characteristics and Stagnation Formation on a Solid Surface by a Supersonic Abrasive Waterjet
,”
Int. J. Extrem. Manuf.
,
1
(
4
), p.
045004
.
You do not currently have access to this content.