Abstract

Shear localization is the dominant chip formation mechanism in machining of high-performance metallic components, such as those made of titanium and nickel-based alloys. This paper presents an analytical thermo-mechanical model considering a new tool-chip contact mechanism due to shear localization. First, it is experimentally shown that the sticking and sliding contact lengths fluctuate with the frequency of shear localization. Second, a cutting mechanics model is developed considering the shear band formation, its rolling on the tool’s rake face, and the time-varying tool-chip contact length with experimental validation. Finally, the transient temperature at the tool-chip interface is predicted by taking the rolling phenomenon and the time-varying heat sources at the tool-chip interface into account. The proposed model shows that at the beginning of every segmentation cycle, the entire tool-chip contact length is dominated by sliding condition with negligible sticking length. When the tool advances, new workpiece material piles up in its front with an increase in the sticking length. Meanwhile, the sliding length decreases due to the drop in the load-bearing capacity of the shear band. When enough material piles up in front of the tool, a new shear band forms, and the entire contact length returns to the sliding condition. This process repeats every time a shear band occurs, causing the cyclic formation of shear bands and time-varying nature of the tool-chip contact length, therefore influencing the temperature and stress evolution at the tool-chip interface.

References

1.
Li
,
G.
,
Cai
,
Y.
,
Qi
,
H.
,
Liu
,
M.
, and
Qi
,
X.
,
2020
, “
Research on the Evolution of Serrated Chips in High-Speed Cutting Based on Digital Microscope
,”
Mach. Sci. Technol.
,
25
(
1
), pp.
52
70
.
2.
Fazlali
,
M.
,
Ponga
,
M.
, and
Jin
,
X.
,
2022
, “
Predictive Model of Chip Segmentation in Machining of High-Strength Metallic Alloys
,”
J. Mater. Process. Technol.
,
308
, pp.
1
21
.
3.
Komanduri
,
R.
,
Schroeder
,
T.
,
Hazra
,
J.
,
Von Turkovich
,
B.
, and
Flom
,
D.
,
1982
, “
On the Catastrophic Shear Instability in High-Speed Machining of an AISI 4340 Steel
,”
J. Eng. Ind.
,
104
(
2
), pp.
121
131
.
4.
Yadav
,
S.
, and
Sagapuram
,
D.
,
2020
, “
Nucleation Properties of Isolated Shear Bands
,”
Proc. R. Soc. A
,
476
(
2241
), p.
20200529
.
5.
Sagapuram
,
D.
,
Viswanathan
,
K.
,
Mahato
,
A.
,
Sundaram
,
N. K.
,
M’Saoubi
,
R.
,
Trumble
,
K. P.
, and
Chandrasekar
,
S.
,
2016
, “
Geometric Flow Control of Shear Bands by Suppression of Viscous Sliding
,”
Proc. R. Soc. A: Math., Phys. Eng. Sci.
,
472
(
2192
), p.
20160167
.
6.
Bordin
,
A.
,
Sartori
,
S.
,
Bruschi
,
S.
, and
Ghiotti
,
A.
,
2017
, “
Experimental Investigation on the Feasibility of Dry and Cryogenic Machining as Sustainable Strategies When Turning Ti6Al4V Produced by Additive Manufacturing
,”
J. Clean. Prod.
,
142
(
4
), pp.
4142
4151
.
7.
Alonso
,
U.
,
Veiga
,
F.
,
Suárez
,
A.
, and
Artaza
,
T.
,
2019
, “
Experimental Investigation of the Influence of Wire Arc Additive Manufacturing on the Machinability of Titanium Parts
,”
Metals
,
10
(
1
), p.
24
.
8.
Lizzul
,
L.
,
Sorgato
,
M.
,
Bertolini
,
R.
,
Ghiotti
,
A.
, and
Bruschi
,
S.
,
2020
, “
Influence of Additive Manufacturing-Induced Anisotropy on Tool Wear in End Milling of Ti6Al4V
,”
Tribol. Int.
,
146
, p.
106200
.
9.
Yadav
,
S.
, and
Sagapuram
,
D.
,
2020
, “
In Situ Analysis of Shear Bands and Boundary Layer Formation in Metals
,”
Proc. R. Soc. A
,
476
(
2234
), p.
20190519
.
10.
Fazlali
,
M.
,
Ponga
,
M.
, and
Jin
,
X.
,
2022
, “
Analytical Modeling of Shear Localization in Orthogonal Cutting Processes
,”
ASME J. Manuf. Sci. Eng.
,
144
(
2
), p.
021013
.
11.
Wright
,
T. W.
,
2002
,
The Physics and Mathematics of Adiabatic Shear Bands
,
Cambridge University Press
,
Cambridge, UK
.
12.
Komanduri
,
R.
,
1982
, “
Some Clarifications on the Mechanics of Chip Formation When Machining Titanium Alloys
,”
Wear
,
76
(
1
), pp.
15
34
.
13.
Saketi
,
S.
,
Odelros
,
S.
,
Östby
,
J.
, and
Olsson
,
M.
,
2019
, “
Experimental Study of Wear Mechanisms of Cemented Carbide in the Turning of Ti6Al4V
,”
Materials
,
12
(
17
), p.
2822
.
14.
Jadam
,
T.
,
Datta
,
S.
, and
Masanta
,
M.
,
2020
, “
Studies on Chip Morphology and Modes of Tool Wear During Machining of Ti-6Al-4V Using Uncoated Carbide Tool: Application of Multi-Walled Carbon Nanotubes Added Rice Bran Oil as Nanocutting Fluid
,”
Mach. Sci. Technol.
,
25
(
2
), pp.
237
287
.
15.
Jadam
,
T.
,
Datta
,
S.
, and
Masanta
,
M.
,
2021
, “
Influence of Cutting Tool Material on Machinability of Inconel 718 Superalloy
,”
Mach. Sci. Technol.
,
25
(
3
), pp.
349
397
.
16.
Fazlali
,
M.
,
Ponga
,
M.
, and
Jin
,
X.
,
2022
, “
Analysis of the Unique Mechanics of Shear Localization in Metal Cutting Processes
,”
International Manufacturing Science and Engineering Conference
,
West Lafayette, IN
,
June 27–July 1
, Vol. 85819, American Society of Mechanical Engineers, p. V002T05A054.
17.
Amin
,
A. N.
,
Ismail
,
A. F.
, and
Khairusshima
,
M. N.
,
2007
, “
Effectiveness of Uncoated WC-CO and PCD Inserts in End Milling of Titanium Alloy-Ti–6Al–4V
,”
J. Mater. Process. Technol.
,
192
, pp.
147
158
.
18.
Sagapuram
,
D.
,
Yeung
,
H.
,
Guo
,
Y.
,
Mahato
,
A.
,
M’Saoubi
,
R.
,
Compton
,
W. D.
,
Trumble
,
K. P.
, and
Chandrasekar
,
S.
,
2015
, “
On Control of Flow Instabilities in Cutting of Metals
,”
CIRP Ann.
,
64
(
1
), pp.
49
52
.
19.
Su
,
G.
,
Liu
,
Z.
,
Li
,
L.
, and
Wang
,
B.
,
2015
, “
Influences of Chip Serration on Micro-Topography of Machined Surface in High-Speed Cutting
,”
Int. J. Mach. Tools Manuf.
,
89
, pp.
202
207
.
20.
Ortiz-de Zarate
,
G.
,
Sela
,
A.
,
Soriano
,
D.
,
Soler
,
D.
,
Aristimuño
,
P.
, and
Arrazola
,
P.
,
2019
, “
Influence of Chip Segmentation of Ti64 on the Topography of the Machined Surface
,”
AIP Conf. Proc.
,
2113
(
1
), p.
080022
.
21.
Molinari
,
A.
,
Soldani
,
X.
, and
Miguélez
,
M.
,
2013
, “
Adiabatic Shear Banding and Scaling Laws in Chip Formation With Application to Cutting of Ti–6Al–4V
,”
J. Mech. Phys. Solids
,
61
(
11
), pp.
2331
2359
.
22.
Childs
,
T. H.
,
Arrazola
,
P.-J.
,
Aristimuno
,
P.
,
Garay
,
A.
, and
Sacristan
,
I.
,
2018
, “
Ti6Al4V Metal Cutting Chip Formation Experiments and Modelling Over a Wide Range of Cutting Speeds
,”
J. Mater. Process. Technol.
,
255
, pp.
898
913
.
23.
Ducobu
,
F.
,
Rivière-Lorphèvre
,
E.
, and
Filippi
,
E.
,
2015
, “
On the Introduction of Adaptive Mass Scaling in a Finite Element Model of Ti6Al4V Orthogonal Cutting
,”
Simul. Modell. Pract. Theory
,
53
, pp.
1
14
.
24.
Liu
,
G.
,
Shah
,
S.
, and
Özel
,
T.
,
2019
, “
Material Ductile Failure-Based Finite Element Simulations of Chip Serration in Orthogonal Cutting of Titanium Alloy Ti-6Al-4V
,”
ASME J. Manuf. Sci. Eng.
,
141
(
4
), p.
041017
.
25.
Sadeghifar
,
M.
,
Sedaghati
,
R.
,
Jomaa
,
W.
, and
Songmene
,
V.
,
2018
, “
A Comprehensive Review of Finite Element Modeling of Orthogonal Machining Process: Chip Formation and Surface Integrity Predictions
,”
Int. J. Adv. Manuf. Technol.
,
96
(
9
), pp.
3747
3791
.
26.
Xu
,
B.
,
Zhang
,
J.
,
Liu
,
H.
,
Xu
,
X.
, and
Zhao
,
W.
,
2021
, “
Serrated Chip Formation Induced Periodic Distribution of Morphological and Physical Characteristics in Machined Surface During High-Speed Machining of Ti6Al4V
,”
ASME J. Manuf. Sci. Eng.
,
143
(
10
), p.
101006
.
27.
Dodd
,
B.
, and
Bai
,
Y.
,
2012
,
Adiabatic Shear Localization: Frontiers and Advances
,
Elsevier
,
Boston, MA
.
28.
Burns
,
T. J.
, and
Davies
,
M. A.
,
1997
, “
Nonlinear Dynamics Model for Chip Segmentation in Machining
,”
Phys. Rev. Lett.
,
79
(
3
), p.
447
.
29.
Burns
,
T. J.
,
Davies
,
M. A.
, and
Evans
,
C. J.
,
2000
, “On the Bifurcation From Continuous to Segmented Chip Formation in Metal Cutting,”
Numerical Methods for Bifurcation Problems and Large-Scale Dynamical Systems
,
E.
Doedel
and
L. S.
Tuckerman
, eds.,
Springer
,
New York
, pp.
67
83
.
30.
Burns
,
T. J.
, and
Davies
,
M. A.
,
2002
, “
On Repeated Adiabatic Shear Band Formation During High-Speed Machining
,”
Int. J. Plast.
,
18
(
4
), pp.
487
506
.
31.
Merchant
,
M. E.
,
1945
, “
Mechanics of the Metal Cutting Process. I. Orthogonal Cutting and a Type 2 Chip
,”
J. Appl. Phys.
,
16
(
5
), pp.
267
275
.
32.
Merchant
,
M. E.
,
1945
, “
Mechanics of the Metal Cutting Process. II. Plasticity Conditions in Orthogonal Cutting
,”
J. Appl. Phys.
,
16
(
6
), pp.
318
324
.
33.
Komanduri
,
R.
, and
Hou
,
Z. B.
,
2000
, “
Thermal Modeling of the Metal Cutting Process: Part I–Temperature Rise Distribution Due to Shear Plane Heat Source
,”
Int. J. Mech. Sci.
,
42
(
9
), pp.
1715
1752
.
34.
Komanduri
,
R.
, and
Hou
,
Z. B.
,
2001
, “
Thermal Modeling of the Metal Cutting Process-Part II: Temperature Rise Distribution Due to Frictional Heat Source at the Tool–Chip Interface
,”
Int. J. Mech. Sci.
,
43
(
1
), pp.
57
88
.
35.
Moufki
,
A.
,
Molinari
,
A.
, and
Dudzinski
,
D.
,
1998
, “
Modelling of Orthogonal Cutting With a Temperature Dependent Friction Law
,”
J. Mech. Phys. Solids
,
46
(
10
), pp.
2103
2138
.
36.
Budak
,
E.
,
Ozlu
,
E.
,
Bakioglu
,
H.
, and
Barzegar
,
Z.
,
2016
, “
Thermo-Mechanical Modeling of the Third Deformation Zone in Machining for Prediction of Cutting Forces
,”
CIRP Ann.
,
65
(
1
), pp.
121
124
.
37.
Barzegar
,
Z.
, and
Ozlu
,
E.
,
2021
, “
Analytical Prediction of Cutting Tool Temperature Distribution in Orthogonal Cutting Including Third Deformation Zone
,”
J. Manuf. Processes
,
67
, pp.
325
344
.
38.
Lazoglu
,
I.
, and
Altintas
,
Y.
,
2002
, “
Prediction of Tool and Chip Temperature in Continuous and Interrupted Machining
,”
Int. J. Mach. Tools Manuf.
,
42
(
9
), pp.
1011
1022
.
39.
Islam
,
C.
,
Lazoglu
,
I.
, and
Altintas
,
Y.
,
2016
, “
A Three-Dimensional Transient Thermal Model for Machining
,”
ASME J. Manuf. Sci. Eng.
,
138
(
2
), p.
021003
.
40.
Altintas
,
Y. A.
, and
Ber
,
A. R.
,
2001
, “
Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations, and CNC Design
,”
ASME Appl. Mech. Rev.
,
54
, pp.
B84
B84
.
41.
Adrian
,
R. J.
, and
Westerweel
,
J.
,
2011
,
Particle Image Velocimetry
,
Cambridge University Press
,
Cambridge, UK
.
42.
Thielicke
,
W.
, and
Stamhuis
,
E.
,
2014
, “
PIVlab-Towards User-Friendly, Affordable and Accurate Digital Particle Image Velocimetry in Matlab
,”
J. Open Res. Softw.
,
2
(
1
), pp.
e30-1
e30-10
.
43.
Chakrabarty
,
J.
,
2012
,
Theory of Plasticity
,
Elsevier
,
Oxford, UK
.
44.
Molinari
,
A.
,
Cheriguene
,
R.
, and
Miguelez
,
H.
,
2012
, “
Contact Variables and Thermal Effects at the Tool-Chip Interface in Orthogonal Cutting
,”
Int. J. Solids Struct.
,
49
(
26
), pp.
3774
3796
.
45.
Ozel
,
T.
,
Llanos
,
I.
,
Soriano
,
J.
, and
Arrazola
,
P.-J.
,
2011
, “
3D Finite Element Modelling of Chip Formation Process for Machining Inconel 718: Comparison of FE Software Predictions
,”
Mach. Sci. Technol.
,
15
(
1
), pp.
21
46
.
46.
Shaw
,
M. C.
, and
Cookson
,
J.
,
2005
,
Metal Cutting Principles
, Vol.
2
,
Oxford University Press
,
New York
.
47.
Guo
,
Y.
, and
Wen
,
Q.
,
2005
, “
A Hybrid Modeling Approach to Investigate Chip Morphology Transition with the Stagnation Effect by Cutting Edge Geometry
,”
North American Manufacturing Research Conference
,
New York
,
May 24–27
.
48.
Lee
,
E.
, and
Shaffer
,
B.
,
1951
, “
The Theory of Plasticity Applied to A Problem of Machining
,”
ASME J. Appl. Mech.
,
18
(
4
), pp.
405
413
.
49.
Hindmarsh
,
A.
,
Gresho
,
P.
, and
Griffiths
,
D.
,
1984
, “
The Stability of Explicit Euler Time-Integration for Certain Finite Difference Approximations of the Multi-dimensional Advection–Diffusion Equation
,”
Int. J. Numer. Meth. Fluids
,
4
(
9
), pp.
853
897
.
50.
Vinogradov
,
A.
, and
Estrin
,
Y.
,
2018
, “
Analytical and Numerical Approaches to Modelling Severe Plastic Deformation
,”
Prog. Mater. Sci.
,
95
, pp.
172
242
.
51.
Lee
,
W.-S.
, and
Lin
,
C.-F.
,
1998
, “
High-Temperature Deformation Behaviour of Ti6Al4V Alloy Evaluated by High Strain-Rate Compression Tests
,”
J. Mater. Process. Technol.
,
75
(
1–3
), pp.
127
136
.
52.
Miguélez
,
M.
,
Soldani
,
X.
, and
Molinari
,
A.
,
2013
, “
Analysis of Adiabatic Shear Banding in Orthogonal Cutting of Ti Alloy
,”
Int. J. Mech. Sci.
,
75
, pp.
212
222
.
53.
Smith
,
W. F.
,
1993
,
Structure and Properties of Engineering Alloys
,
McGraw-Hill
,
New York
.
54.
Molinari
,
A.
,
Cheriguene
,
R.
, and
Miguelez
,
H.
,
2011
, “
Numerical and Analytical Modeling of Orthogonal Cutting: The Link Between Local Variables and Global Contact Characteristics
,”
Int. J. Mech. Sci.
,
53
(
3
), pp.
183
206
.
55.
Hahn
,
S.
,
1953
, “
Discussion to Shaw, M. C., Cook, N. H., and Finnie, I., The Shear Angle Relationship in Metal Cutting
,”
Trans. ASME
,
75
(
2
), p.
285
.
56.
Rubenstein
,
C.
,
1965
, “
A Simple Theory of Orthogonal Cutting
,”
Int. J. Mach. Tool Des. Res.
,
4
(
3
), pp.
123
156
.
57.
Budak
,
E.
, and
Ozlu
,
E.
,
2008
, “
Development of a Thermomechanical Cutting Process Model for Machining Process Simulations
,”
CIRP Ann.
,
57
(
1
), pp.
97
100
.
58.
Kato
,
S.
,
Yamaguchi
,
K.
, and
Yamada
,
M.
,
1972
, “
Stress Distribution at the Interface Between Tool and Chip in Machining
,”
J. Eng. Ind.
,
94
(
2
), pp.
683
689
.
59.
Sutter
,
G.
,
2005
, “
Chip Geometries During High-Speed Machining for Orthogonal Cutting Conditions
,”
Int. J. Mach. Tools. Manuf.
,
45
(
6
), pp.
719
726
.
60.
Fatima
,
A.
, and
Mativenga
,
P. T.
,
2013
, “
A Review of Tool-Chip Contact Length Models in Machining and Future Direction for Improvement
,”
Proc. Inst. Mech. Eng. B.
,
227
(
3
), pp.
345
356
.
61.
Kosky
,
P.
,
Balmer
,
R.
,
Keat
,
W.
, and
Wise
,
G.
,
2013
, “Chapter 12 – Mechanical Engineering,”
Exploring Engineering
, 3rd ed.,
P.
Kosky
,
R.
Balmer
,
W.
Keat
, and
G.
Wise
, eds.,
Academic Press
,
Boston
, pp.
259
281
.
62.
Akbar
,
F.
,
Mativenga
,
P. T.
, and
Sheikh
,
M.
,
2010
, “
An Experimental and Coupled Thermo-Mechanical Finite Element Study of Heat Partition Effects in Machining
,”
Int. J. Adv. Manuf. Technol.
,
46
(
5
), pp.
491
507
.
63.
Mane
,
S.
,
Joshi
,
S. S.
,
Karagadde
,
S.
, and
Kapoor
,
S. G.
,
2020
, “
Modeling of Variable Friction and Heat Partition Ratio at the Chip-Tool Interface During Orthogonal Cutting of Ti-6Al-4V
,”
J. Manuf. Process.
,
55
, pp.
254
267
.
64.
Pramanik
,
A.
, and
Littlefair
,
G.
,
2015
, “
Machining of Titanium Alloy (Ti-6Al-4V)-Theory to Application
,”
Mach. Sci. Technol.
,
19
(
1
), pp.
1
49
.
65.
Huo
,
D.
,
2013
,
Micro-Cutting: Fundamentals and Applications
,
John Wiley & Sons
,
Hoboken, NJ
.
66.
Niu
,
Z.
,
Jiao
,
F.
, and
Cheng
,
K.
,
2018
, “
An Innovative Investigation on Chip Formation Mechanisms in Micro-Milling Using Natural Diamond and Tungsten Carbide Tools
,”
J. Manuf. Process.
,
31
, pp.
382
394
.
You do not currently have access to this content.