Abstract

As a popular applied artificial intelligence tool, Bayesian networks are increasingly being used to model multistage manufacturing processes for fault diagnosis purposes. However, the major issue limiting the practical adoption of Bayesian networks is the difficulty of learning the network structure for large multistage processes. Traditionally, Bayesian network structures are learned either with the help of domain experts or by utilizing data-driven structure learning algorithms through trial and error. Both approaches have their limitations. On the one hand, the expert-driven approach is costly, time-consuming, cumbersome for large networks, and susceptible to errors in assessing probabilities; on the other hand, data-driven approaches suffer from noise, biases, and inadequacy of training data and often fail to capture the physical causal structure of the data. Therefore, in this article, we propose a Bayesian network structure learning approach where popular manufacturing knowledge sources like the failure mode and effect analysis (FMEA) and hierarchical variable ordering are used as structural priors to guide the data-driven structure learning process. In addition, to introduce modularity and flexibility into the learning process, we present a sequential modeling approach for structure learning so that large multistage networks can be learned stage by stage progressively. Furthermore, through simulation studies, we compare and analyze the performance of the knowledge source–based structurally biased networks in the context of multistage process fault diagnosis.

References

1.
Korb
,
K. B.
, and
Nicholson
,
A. E.
,
2010
,
Bayesian Artificial Intelligence
,
CRC Press
,
Boca Raton, FL
.
2.
Pearl
,
J.
,
1988
,
Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference
, 2nd ed.,
Morgan Kaufmann
,
San Francisco, CA
.
3.
McNaught
,
K.
, and
Chan
,
A.
,
2011
, “
Bayesian Networks in Manufacturing
,”
J. Manuf. Technol. Manag.
,
22
(
6
), pp.
734
747
.
4.
Huang
,
L.
,
Cai
,
G.
,
Yuan
,
H.
, and
Chen
,
J.
,
2019
, “
A Hybrid Approach for Identifying the Structure of a Bayesian Network Model
,”
Expert Syst. Appl.
,
131
, pp.
308
320
.
5.
Flores
,
M. J.
,
Nicholson
,
A. E.
,
Brunskill
,
A.
,
Korb
,
K. B.
, and
Mascaro
,
S.
,
2011
, “
Incorporating Expert Knowledge When Learning Bayesian Network Structure: A Medical Case Study
,”
Artif. Intell. Med.
,
53
(
3
), pp.
181
204
.
6.
Sayed
,
M. S.
, and
Lohse
,
N.
,
2014
, “
Ontology-Driven Generation of Bayesian Diagnostic Models for Assembly Systems
,”
Int. J. Adv. Manuf. Technol.
,
74
(
5
), pp.
1033
1052
.
7.
Sharma
,
K. D.
, and
Srivastava
,
S.
,
2018
, “
Failure Mode and Effect Analysis (FMEA) Implementation: A Literature Review
,”
J. Adv. Res. Aeronaut. Space Sci.
,
5
(
1–2
), pp.
1
17
.
8.
Rastayesh
,
S.
,
Bahrebar
,
S.
,
Blaabjerg
,
F.
,
Zhou
,
D.
,
Wang
,
H.
, and
Dalsgaard Sørensen
,
J.
,
2019
, “
A System Engineering Approach Using FMEA and Bayesian Network for Risk Analysis—A Case Study
,”
Sustainability
,
12
(
1
), p.
77
.
9.
Brahim
,
I. B.
,
Addouche
,
S.-A.
,
El Mhamedi
,
A.
, and
Boujelbene
,
Y.
,
2019
, “
Build a Bayesian Network From FMECA in the Production of Automotive Parts: Diagnosis and Prediction
,”
IFAC-PapersOnLine
,
52
(
13
), pp.
2572
2577
.
10.
Kulkarni
,
C. S.
,
Corbetta
,
M.
, and
Robinson
,
E.
,
2020
, “
Enhancing Fault Isolation for Health Monitoring of Electric Aircraft Propulsion by Embedding Failure Mode and Effect Analysis Into Bayesian Networks
,”
Annual Conference of the PHM Society
,
Virtual Conference
,
Nov. 9–13
, Vol.
12
, No.
1
, p.
12
. .
11.
Lewis
,
R. W.
, and
Ransing
,
R. S.
,
1997
, “
A Semantically Constrained Bayesian Network for Manufacturing Diagnosis
,”
Int. J. Prod. Res.
,
35
(
8
), pp.
2171
2188
.
12.
Li
,
B. H.
,
Liu
,
S. Y.
, and
Li
,
Z. G.
,
2012
, “
Improved Algorithm Based on Mutual Information for Learning Bayesian Network Structures in the Space of Equivalence Classes
,”
Multimed. Tools Appl.
,
60
(
1
), pp.
129
137
.
13.
Wolbrecht
,
E.
,
D'ambrosio
,
B.
,
Paasch
,
R.
, and
Kirby
,
D.
,
2000
, “
Monitoring and Diagnosis of a Multistage Manufacturing Process Using Bayesian Networks
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
14
(
1
), pp.
53
67
.
14.
Nhat
,
D. M.
,
Venkatesan
,
R.
, and
Khan
,
F.
,
2020
, “
Data-Driven Bayesian Network Model for Early Kick Detection in Industrial Drilling Process
,”
Process Saf. Environ. Prot.
,
138
, pp.
130
138
.
15.
Amin
,
M. T.
,
Khan
,
F.
,
Ahmed
,
S.
, and
Imtiaz
,
S.
,
2021
, “
A Data-Driven Bayesian Network Learning Method for Process Fault Diagnosis
,”
Process Saf. Environ. Prot.
,
150
, pp.
110
122
.
16.
Druzdzel
,
M. J.
, and
Diez
,
F. J.
,
2003
, “
Combining Knowledge From Different Sources in Causal Probabilistic Models
,”
J. Mach. Learn. Res.
,
4
, pp.
295
316
.
17.
Fenz
,
S.
,
2012
, “
An Ontology-Based Approach for Constructing Bayesian Networks
,”
Data Knowl. Eng.
,
73
, pp.
73
88
.
18.
Zhou
,
Y.
,
Fenton
,
N.
, and
Zhu
,
C.
,
2016
, “
An Empirical Study of Bayesian Network Parameter Learning With Monotonic Influence Constraints
,”
Decis. Support Syst.
,
87
, pp.
69
79
.
19.
Cooper
,
G. F.
, and
Herskovits
,
E.
,
1992
, “
A Bayesian Method for the Induction of Probabilistic Networks From Data
,”
Mach. Learn.
,
9
(
4
), pp.
309
347
.
20.
Castelo
,
R.
, and
Siebes
,
A.
,
2000
, “
Priors on Network Structures. Biasing the Search for Bayesian Networks
,”
Int. J. Approx. Reason.
,
24
(
1
), pp.
39
57
.
21.
de Campos
,
L. M.
, and
Castellano
,
J. G.
,
2007
, “
Bayesian Network Learning Algorithms Using Structural Restrictions
,”
Int. J. Approx. Reason.
,
45
(
2
), pp.
233
254
.
22.
Cano
,
A.
,
Masegosa
,
A. R.
, and
Moral
,
S.
,
2011
, “
A Method for Integrating Expert Knowledge When Learning Bayesian Networks From Data
,”
IEEE Trans. Syst. Man Cybern. B Cybern
,
41
(
5
), pp.
1382
1394
.
23.
Mondal
,
P. P.
,
Ferreira
,
P. M.
,
Kapoor
,
S. G.
, and
Bless
,
P. N.
,
2021
, “
Monitoring and Diagnosis of Multistage Manufacturing Processes Using Hierarchical Bayesian Networks
,”
Procedia Manuf.
,
53
, pp.
32
43
.
24.
Nadkarni
,
S.
, and
Shenoy
,
P. P.
,
2001
, “
A Bayesian Network Approach to Making Inferences in Causal Maps
,”
Eur. J. Oper. Res.
,
128
(
3
), pp.
479
498
.
25.
Parsana
,
T. S.
, and
Patel
,
M. T.
,
2014
, “
A Case Study: A Process FMEA Tool to Enhance Quality and Efficiency of Manufacturing Industry
,”
Bonfring Int. J. Ind. Eng. Manag. Sci.
,
4
(
3
), pp.
145
152
.
26.
Uzsoy
,
R.
,
Lee
,
C.-Y.
, and
Martin-Vega
,
L. A.
,
1992
, “
A Review of Production Planning and Scheduling Models in the Semiconductor Industry Part I: System Characteristics, Performance Evaluation and Production Planning
,”
IIE Trans.
,
24
(
4
), pp.
47
60
.
27.
Constantinou
,
A. C.
,
Liu
,
Y.
,
Chobtham
,
K.
,
Guo
,
Z.
, and
Kitson
,
N. K.
,
2021
, “
Large-Scale Empirical Validation of Bayesian Network Structure Learning Algorithms With Noisy Data
,”
Int. J. Approx. Reason.
,
131
, pp.
151
188
.
28.
Scutari
,
M.
,
Vitolo
,
C.
, and
Tucker
,
A.
,
2019
, “
Learning Bayesian Networks From Big Data With Greedy Search: Computational Complexity and Efficient Implementation
,”
Stat. Comput.
,
29
(
5
), pp.
1095
1108
.
29.
Neath
,
A. A.
, and
Cavanaugh
,
J. E.
,
2012
, “
The Bayesian Information Criterion: Background, Derivation, and Applications
,”
Wiley Interdiscip. Rev. Comput. Stat.
,
4
(
2
), pp.
199
203
.
30.
Lauritzen
,
S. L.
, and
Spiegelhalter
,
D. J.
,
1988
, “
Local Computations With Probabilities on Graphical Structures and Their Application to Expert Systems
,”
J. R. Stat. Soc., B: Stat. Methodol.
,
50
(
2
), pp.
157
194
.
31.
Højsgaard
,
S.
,
2012
, “
Graphical Independence Networks With the GRain Package for R
,”
J. Stat. Softw.
,
46
(
10
), pp.
1
26
.
32.
Scutari
,
M.
, and
Denis
,
J.-B.
,
2021
,
Bayesian Networks: With Examples in R
, 2nd ed.,
Chapman and Hall/CRC
,
New York
.
33.
R Core Team
,
2019
,
R: A Language and Environment for Statistical Computing
,
R Foundation for Statistical Computing
,
Vienna, Austria
.
You do not currently have access to this content.