Abstract

Powder bed fusion (PBF) is an additive manufacturing process in which laser heat liquefies blown powder particles on top of a powder bed, and cooling solidifies the melted powder particles. During this process, the laser beam heat interacts with the powder causing thermal emission and affecting the melt pool. This paper aims to predict heat emission in PBF by harnessing the strengths of recurrent neural networks. Long short-term memory (LSTM) networks are developed to learn from sequential data (emission readings), while the learning is guided by process physics including laser power, laser speed, layer number, and scanning patterns. To reduce the computational efforts on model training, the LSTM models are integrated with a new approach for down-sampling the pyrometry raw data and extracting useful statistical features from raw data. The structure and hyperparameters of the LSTM model reflect several iterations of tuning based on the training on the pyrometer readings data. Results reveal useful knowledge on how raw pyrometer data should be processed to work the best with LSTM, how physics features are informative in predicting overheating, and the effectiveness of physics-guided LSTM in emission prediction.

References

1.
Zeng
,
K.
,
Pal
,
D.
, and
Stucker
,
B.
,
2012
, “
A Review of Thermal Analysis Methods in Laser Sintering and Selective Laser Melting
,”
2012 International Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 6–8
.
2.
Zenou
,
M.
, and
Grainger
,
L.
,
2018
,
Additive Manufacturing: Materials, Processes, Quantifications and Applications
,
Butterworth-Heinemann
,
Oxford, UK
, pp.
53
103
.
3.
Gisario
,
A.
,
Kazarian
,
M.
,
Martina
,
F.
, and
Mehrpouya
,
M.
,
2019
, “
Metal Additive Manufacturing in the Commercial Aviation Industry: A Review
,”
J. Manuf. Syst.
,
53
(
4
), pp.
124
149
.
4.
Qiu
,
C.
,
Yue
,
S.
,
Adkins
,
N. J.
,
Ward
,
M.
,
Hassanin
,
H.
,
Lee
,
P. D.
,
Withers
,
P. J.
, and
Attallah
,
M. M.
,
2015
, “
Influence of Processing Conditions on Strut Structure and Compressive Properties of Cellular Lattice Structures Fabricated by Selective Laser Melting
,”
Mater. Sci. Eng. A
,
628
, pp.
188
197
.
5.
Wang
,
P.
,
Yang
,
Y.
, and
Moghaddam
,
N. S.
,
2022
, “
Process Modeling in Laser Powder Bed Fusion Towards Defect Detection and Quality Control Via Machine Learning: The State-of-the-Art and Research Challenges
,”
J. Manuf. Process.
,
73
, pp.
961
984
.
6.
Sanaei
,
N.
,
Fatemi
,
A.
, and
Phan
,
N.
,
2019
, “
Defect Characteristics and Analysis of Their Variability in Metal L-PBF Additive Manufacturing
,”
Mater. Des.
,
182
(
3
), p.
108091
.
7.
Harrison
,
N. J.
,
Todd
,
I.
, and
Mumtaz
,
K.
,
2015
, “
Reduction of Micro-cracking in Nickel Superalloys Processed by Selective Laser Melting: A Fundamental Alloy Design Approach
,”
Acta Mater.
,
94
(
1
), pp.
59
68
.
8.
Tan
,
C.
,
Zhou
,
K.
,
Ma
,
W.
,
Attard
,
B.
,
Zhang
,
P.
, and
Kuang
,
T.
,
2018
, “
Selective Laser Melting of High-Performance Pure Tungsten: Parameter Design, Densification Behavior and Mechanical Properties
,”
Sci. Technol. Adv. Mater.
,
19
(
1
), pp.
370
380
.
9.
Benoit
,
N.
,
Rana
,
H.
, and
Valamanesh
,
A.
,
2018
,
Applying Machine Learning for Real Time Optimization of Powder Bed Manufacturing
,
Worcester Polytechnic Institute
,
Worcester
.
10.
Mohr
,
G.
,
Nowakowski
,
S.
,
Altenburg
,
S. J.
,
Maierhofer
,
C.
, and
Hilgenberg
,
K.
,
2020
, “
Experimental Determination of the Emissivity of Powder Layers and Bulk Material in Laser Powder Bed Fusion Using Infrared Thermography and Thermocouples
,”
Metals
,
10
(
11
), p.
1546
.
11.
Goh
,
G. D.
,
Sing
,
S. L.
, and
Yeong
,
W. Y.
,
2021
, “
A Review on Machine Learning in 3D Printing: Applications, Potential, and Challenges
,”
Artif. Intell. Rev.
,
54
(
1
), pp.
63
94
.
12.
Rieder
,
H.
,
Dillhöfer
,
A.
,
Spies
,
M.
,
Bamberg
,
J.
, and
Hess
,
T.
,
2014
, “
Online Monitoring of Additive Manufacturing Processes Using Ultrasound
,”
Proceedings of the 11th European Conference on Non-Destructive Testing
,
Prague, Czech Republic
,
Oct. 6–10
.
13.
Du Plessis
,
A.
,
Yadroitsev
,
I.
,
Yadroitsava
,
I.
, and
Le Roux
,
S. G.
,
2018
, “
X-Ray Microcomputed Tomography in Additive Manufacturing: A Review of the Current Technology and Applications
,”
3D Print. Addit. Manuf.
,
5
(
3
), pp.
227
247
.
14.
Haines
,
M. P.
,
Peter
,
N. J.
,
Babu
,
S.
, and
Jägle
,
E. A.
,
2020
, “
In-Situ Synthesis of Oxides by Reactive Process Atmospheres During L-PBF of Stainless Steel
,”
Addit. Manuf.
,
33
(
3
), p.
101178
.
15.
Mani
,
M.
,
Lane
,
B. M.
,
Donmez
,
M. A.
,
Feng
,
S. C.
, and
Moylan
,
S. P.
,
2017
, “
A Review on Measurement Science Needs for Real-Time Control of Additive Manufacturing Metal Powder Bed Fusion Processes
,”
Int. J. Prod. Res.
,
55
(
5
), pp.
1400
1418
.
16.
Razvi
,
S. S.
,
Feng
,
S.
,
Narayanan
,
A.
,
Lee
,
Y.-T. T.
, and
Witherell
,
P.
,
2019
, “
A Review of Machine Learning Applications in Additive Manufacturing
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Anaheim, CA
,
Aug. 18–21
.
17.
Scime
,
L.
, and
Beuth
,
J.
,
2019
, “
Using Machine Learning to Identify In-Situ Melt Pool Signatures Indicative of Flaw Formation in a Laser Powder Bed Fusion Additive Manufacturing Process
,”
Addit. Manuf.
,
25
, pp.
151
165
.
18.
Yang
,
Z.
,
Lu
,
Y.
,
Yeung
,
H.
, and
Krishnamurty
,
S.
,
2019
, “
Investigation of Deep Learning for Real-Time Melt Pool Classification in Additive Manufacturing
,”
2019 IEEE 15th International Conference on Automation Science and Engineering (CASE)
,
Vancouver, Canada
,
Aug. 22–26
.
19.
Yuan
,
B.
,
Guss
,
G. M.
,
Wilson
,
A. C.
,
Hau-Riege
,
S. P.
,
DePond
,
P. J.
,
McMains
,
S.
,
Matthews
,
M. J.
, and
Giera
,
B.
,
2018
, “
Machine-Learning-Based Monitoring of Laser Powder Bed Fusion
,”
Adv. Mater. Technol.
,
3
(
12
), p.
1800136
.
20.
Ye
,
D.
,
Fuh
,
J. Y. H.
,
Zhang
,
Y.
,
Hong
,
G. S.
, and
Zhu
,
K.
,
2018
, “
In Situ Monitoring of Selective Laser Melting Using Plume and Spatter Signatures by Deep Belief Networks
,”
ISA Trans.
,
81
, pp.
96
104
.
21.
Lough
,
C. S.
,
Liu
,
T.
,
Wang
,
X.
,
Brown
,
B.
,
Landers
,
R. G.
,
Bristow
,
D. A.
,
Drallmeier
,
J. A.
, and
Kinzel
,
E. C.
,
2022
, “
Local Prediction of Laser Powder Bed Fusion Porosity by Short-Wave Infrared Imaging Thermal Feature Porosity Probability Maps
,”
J. Mater. Process. Technol.
,
302
, p.
117473
.
22.
Estalaki
,
S. M.
,
Lough
,
C. S.
,
Landers
,
R. G.
,
Kinzel
,
E. C.
, and
Luo
,
T.
,
2021
, “
Predicting Defects in Laser Powder Bed Fusion Using In-Situ Thermal Imaging Data and Machine Learning
,”
Addit. Manuf.
,
58
, p.
103008
.
23.
Zhang
,
Z.
,
Sahu
,
C. K.
,
Singh
,
S. K.
,
Rai
,
R.
,
Yang
,
Z.
, and
Lu
,
Y.
,
2023
, “
Machine Learning Based Prediction of Melt Pool Morphology in a Laser-Based Powder Bed Fusion Additive Manufacturing Process
,”
Int. J. Prod. Res.
, pp.
1
15
. .
24.
Faroughi
,
S. A.
,
Pawar
,
N.
,
Fernandes
,
C.
,
Das
,
S.
,
Kalantari
,
N. K.
, and
Mahjour
,
S. K.
,
2022
, “
Physics-Guided, Physics-Informed, and Physics-Encoded Neural Networks in Scientific Computing
,”
preprint
.
25.
Mahato
,
V.
,
Obeidi
,
M. A.
,
Brabazon
,
D.
, and
Cunningham
,
P.
,
2020
, “
An Evaluation of Classification Methods for 3d Printing Time-Series Data
,”
IFAC-PapersOnLine
,
53
(
2
), pp.
8211
8216
.
26.
Mahato
,
V.
,
Obeidi
,
M. A.
,
Brabazon
,
D.
, and
Cunningham
,
P.
,
2022
, “
Detecting Voids in 3D Printing Using Melt Pool Time Series Data
.”
J. Intell. Manuf.
,
33
(
3
), pp.
845
852
. .
27.
Gawade
,
V.
,
Galkin
,
G.
,
Guo
,
Y.
, and
Guo
,
W. G.
,
2022
, “
Quantifying and Modeling Overheating Using 3D Pyrometry Map in Powder Bed Fusion
,”
Manuf. Lett.
,
33
, pp.
880
892
.
28.
Bisheh
,
M. N.
,
Chang
,
S. I.
, and
Lei
,
S.
,
2021
, “
A Layer-by-Layer Quality Monitoring Framework for 3D Printing
,”
Comput. Ind. Eng.
,
157
(
11
), p.
107314
.
29.
Hagedorn
,
Y.
, and
Pastors
,
F.
,
2018
, “
Process Monitoring of Laser Beam Melting: Towards In-Situ Process Control for Powder Bed Laser Melting
,”
Laser Technik J.
,
15
(
2
), pp.
54
57
.
30.
Montazeri
,
M.
,
Yavari
,
R.
,
Rao
,
P.
, and
Boulware
,
P.
,
2018
, “
In-Process Monitoring of Material Cross-Contamination Defects in Laser Powder Bed Fusion
,”
ASME J. Manuf. Sci. Eng.
,
140
(
11
), p.
111001
.
31.
Qi
,
X.
,
Chen
,
G.
,
Li
,
Y.
,
Cheng
,
X.
, and
Li
,
C.
,
2019
, “
Applying Neural-Network-Based Machine Learning to Additive Manufacturing: Current Applications, Challenges, and Future Perspectives
,”
Engineering
,
5
(
4
), pp.
721
729
.
32.
Mao
,
Z.
,
Feng
,
W.
,
Ma
,
H.
,
Yang
,
Y.
,
Zhou
,
J.
,
Liu
,
S.
,
Liu
,
Y.
,
Hu
,
P.
,
Zhao
,
K.
, and
Xie
,
H.
,
2023
, “
Continuous Online Flaws Detection With Photodiode Signal and Melt Pool Temperature Based on Deep Learning in Laser Powder Bed Fusion
,”
Opt. Laser Technol.
,
158
(
A
), p.
108877
.
33.
Staudemeyer
,
R. C.
, and
Morris
,
E. R.
,
2019
, “
Understanding LSTM—A Tutorial Into Long Short-Term Memory Recurrent Neural Networks
,” preprint arXiv:1909.09586.
34.
Pandiyan
,
V.
,
Masinelli
,
G.
,
Claire
,
N.
,
Le-Quang
,
T.
,
Hamidi-Nasab
,
M.
,
de Formanoir
,
C.
,
Esmaeilzadeh
,
R.
,
Goel
,
S.
,
Marone
,
F.
, and
Logé
,
R.
,
2022
, “
Deep Learning-Based Monitoring of Laser Powder Bed Fusion Process on Variable Time-Scales Using Heterogeneous Sensing and Operando X-Ray Radiography Guidance
,”
Addit. Manuf.
,
58
, p.
103007
.
35.
Shi
,
Z.
,
Mamun
,
A. A.
,
Kan
,
C.
,
Tian
,
W.
, and
Liu
,
C.
,
2022
, “
An LSTM-Autoencoder Based Online Side Channel Monitoring Approach for Cyber-Physical Attack Detection in Additive Manufacturing
,”
J. Intell. Manuf.
,
34
(
4
), pp.
1815
1831
.
36.
Galkin
,
G.
,
Gawade
,
V.
,
Guo
,
W.
,
Yi
,
J.
, and
Guo
,
Y.
,
2022
, “
In-Situ and Real-Time 3D Pyrometry for Thermal History Diagnosis in Laser Fusion Process
,”
Manuf. Lett.
,
33
, pp.
862
871
.
37.
Yu
,
Y.
,
Si
,
X.
,
Hu
,
C.
, and
Zhang
,
J.
,
2019
, “
A Review of Recurrent Neural Networks: LSTM Cells and Network Architectures
,”
Neural Comput.
,
31
(
7
), pp.
1235
1270
.
38.
Pravin
,
P.
,
Tan
,
J. Z. M.
,
Yap
,
K. S.
, and
Wu
,
Z.
,
2022
, “
Hyperparameter Optimization Strategies for Machine Learning-Based Stochastic Energy Efficient Scheduling in Cyber-Physical Production Systems
,”
Digit. Chem. Eng.
,
4
, p.
100047
.
39.
Datta
,
L.
,
2020
, “
A Survey on Activation Functions and Their Relation With Xavier and He Normal Initialization
,” preprint arXiv:2004.06632.
40.
Wang
,
Y.
,
Oyen
,
D.
,
Guo
,
W.
,
Mehta
,
A.
,
Scott
,
C. B.
,
Panda
,
N.
,
Fernández-Godino
,
M. G.
,
Srinivasan
,
G.
, and
Yue
,
X.
,
2021
, “
StressNet-Deep Learning to Predict Stress With Fracture Propagation in Brittle Materials
,”
NPJ Mater. Degrad.
,
5
(
1
), p.
6
.
You do not currently have access to this content.