Abstract

In fluoride-assisted galvanic replacement reaction (FAGRR), metallic dendrites are formed simultaneously with hydrogen gas. However, the presence of hydrogen bubbles impedes the reduction of metallic ions to form metallic dendrites. This study investigates the FAGRR approach to manufacturing Ag dendrites where ethanol is incorporated into an AgNO3 reaction solution. The findings of this study demonstrate the efficacy of ethanol as an antifoaming agent in enhancing the deposition of the Ag dendrites during the FAGRR process. The antifoaming effect of ethanol becomes more intense at higher concentrations of AgNO3. The introduction of ethanol into FAGRR can significantly improve processing efficiency and yield in the limited time for manufacturing science and engineering.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Watt
,
J.
,
Cheong
,
S.
, and
Tilley
,
R. D.
,
2013
, “
How to Control the Shape of Metal Nanostructures in Organic Solution Phase Synthesis for Plasmonics and Catalysis
,”
Nano Today
,
8
(
2
), pp.
198
215
.
2.
Oladipo
,
A. O.
,
Nkambule
,
T. T.
,
Mamba
,
B. B.
, and
Msagati
,
T. A.
,
2020
, “
Therapeutic Nanodendrites: Current Applications and Prospects
,”
Nanoscale Adv.
,
2
(
11
), pp.
5152
5165
.
3.
Li
,
Y.
,
Qian
,
W.
,
Xia
,
Y.
,
Li
,
X.
,
Li
,
D.
, and
Guo
,
Z.
,
2024
, “
Highly Efficient Sunlight-Driven LSPR-Enhanced Core-Shell Ag Dendrite/g-C3N4 Composite Photocatalysts
,”
Colloids Surf., A
,
683
, p.
133018
.
4.
Urbain
,
F.
,
Tang
,
P.
,
Carretero
,
N. M.
,
Andreu
,
T.
,
Arbiol
,
J.
, and
Morante
,
J. R.
,
2018
, “
Tailoring Copper Foam with Silver Dendrite Catalysts for Highly Selective Carbon Dioxide Conversion Into Carbon Monoxide
,”
ACS Appl. Mater. Interfaces
,
10
(
50
), pp.
43650
43660
.
5.
Fu
,
L.
,
Sokiransky
,
M. M.
,
Wang
,
J.
,
Lai
,
G.
, and
Yu
,
A.
,
2016
, “
Development of Ag Dendrites-Reduced Graphene Oxide Composite Catalysts via Galvanic Replacement Reaction
,”
Physica E
,
83
, pp.
146
150
.
6.
Bandarenka
,
H. V.
,
Khinevich
,
N. V.
,
Burko
,
A. A.
,
Redko
,
S. V.
,
Zavatski
,
S. A.
,
Shapel
,
U. A.
,
Mamatkulov
,
K. Z.
,
Vorobyeva
,
M. Y.
, and
Arzumanyan
,
G. M.
,
2021
, “
3D Silver Dendrites for Single-Molecule Imaging by Surface-Enhanced Raman Spectroscopy
,”
ChemNanoMat
,
7
(
2
), pp.
141
149
.
7.
Kumari
,
R.
,
Dkhar
,
D. S.
,
Mahapatra
,
S.
,
Divya
,
S.
, and
and Chandra
,
S. P.
,
2022
, “
Nano-Engineered Surface Comprising Metallic Dendrites for Biomolecular Analysis in Clinical Perspective
,”
Biosensors
,
12
(
12
), p.
1062
.
8.
Alhmoud
,
H.
,
Delalat
,
B.
,
Ceto
,
X.
,
Elnathan
,
R.
,
Cavallaro
,
A.
,
Vasilev
,
K.
, and
Voelcker
,
N. H.
,
2016
, “
Antibacterial Properties of Silver Dendrite Decorated Silicon Nanowires
,”
RSC Adv.
,
6
(
70
), pp.
65976
65987
.
9.
Huang
,
H. J.
,
Chang
,
H.-W.
,
Lin
,
Y.-W.
,
Chuang
,
S.-Y.
,
Lin
,
Y.-S.
, and
Shiao
,
M.-H.
,
2020
, “
Silicon-Based Ag Dendritic Nanoforests for Light-Assisted Bacterial Inhibition
,”
Nanomaterials
,
10
(
11
), p.
2244
.
10.
Xiao
,
J.
, and
Qi
,
L.
,
2011
, “
Surfactant-Assisted, Shape-Controlled Synthesis of Gold Nanocrystals
,”
Nanoscale
,
3
(
4
), pp.
1383
1396
.
11.
Rafatmah
,
E.
, and
Hemmateenejad
,
B.
,
2020
, “
Dendrite Gold Nanostructures Electrodeposited on Paper Fibers: Application to Electrochemical Non-Enzymatic Determination of Glucose
,”
Sens. Actuators, B
,
304
, p.
127335
.
12.
Zhao
,
Z.
,
Chamele
,
N.
,
Kozicki
,
M.
,
Yao
,
Y.
, and
Wang
,
C.
,
2019
, “
Photochemical Synthesis of Dendritic Silver Nano-Particles for Anti-Counterfeiting
,”
J. Mater. Chem. C
,
7
(
20
), pp.
6099
6104
.
13.
Jia
,
H.
,
Chang
,
G.
,
Shu
,
H.
,
Xu
,
M.
,
Wang
,
X.
,
Zhang
,
Z.
,
Liu
,
X.
, et al
,
2017
, “
Pt Nanoparticles Modified Au Dendritic Nanostructures: Facile Synthesis and Enhanced Electrocatalytic Performance for Methanol Oxidation
,”
Int. J. Hydrog. Energy
,
42
(
34
), pp.
22100
22107
.
14.
Cheng
,
H.
,
Wang
,
C.
,
Qin
,
D.
, and
Xia
,
Y.
,
2023
, “
Galvanic Replacement Synthesis of Metal Nanostructures: Bridging the Gap Between Chemical and Electrochemical Approaches
,”
Accounts Chem. Res.
,
56
(
7
), pp.
900
909
.
15.
Chen
,
J.
,
Davies
,
J. J.
,
Goodfellow
,
A. S.
,
Hall
,
S. M. D.
,
Lancaster
,
H. G.
,
Liu
,
X.
,
Rhodes
,
C. J.
, and
Zhou
,
W.
,
2021
, “
Growth Mechanisms of Ag and Cu Nanodendrites via Galvanic Replacement Reactions
,”
Prog. Nat. Sci.
,
31
(
1
), pp.
141
151
.
16.
Lee
,
P.-Y.
,
Huang
,
H. J.
,
Ko
,
T.-S.
,
Hung
,
Y.-L.
,
Wu
,
L.-Y.
,
Fan
,
J.-J.
, and
Lin
,
Y.-S.
,
2023
, “
Effects of Bubbles on Manufacturing Gold Dendrites and Silicon Nanowires Through the Fluoride-Assisted Galvanic Replacement Reaction
,”
ASME J. Manuf. Sci. Eng.
,
145
(
11
), p.
114501
.
17.
Lee
,
P.-Y.
,
Weng
,
C.-J.
,
Huang
,
H. J.
,
Wu
,
L.-Y.
,
Lu
,
G.-H.
,
Liu
,
C.-F.
,
Chen
,
C.-Y.
,
Li
,
T.-Y.
, and
Lin
,
Y.-S.
,
2023
, “
Bubble Effects on Manufacturing of Silicon Nanowires by Metal-Assisted Chemical Etching
,”
ASME J. Manuf. Sci. Eng.
,
145
(
9
), p.
094501
.
18.
Zhang
,
D.
,
Jiang
,
S.
,
Tao
,
K.
,
Jia
,
R.
,
Ge
,
H.
,
Li
,
X.
,
Wang
,
B.
, et al
,
2021
, “
Fabrication of Inverted Pyramid Structure for High-Efficiency Silicon Solar Cells Using Metal Assisted Chemical Etching Method With CuSO4 Etchant
,”
Sol. Energy Mater. Sol. Cells
,
230
, p.
111200
.
19.
Kolasinski
,
K. W.
,
2021
, “
Metal-Assisted Catalytic Etching (MACE) for Nanofabrication of Semiconductor Powders
,”
Micromachines
,
12
(
7
), p.
776
.
20.
Yoon
,
S.-S.
,
Lee
,
Y. B.
, and
Khang
,
D.-Y.
,
2016
, “
Etchant Wettability in Bulk Micromachining of Si by Metal-Assisted Chemical Etching
,”
Appl. Surf. Sci.
,
370
, pp.
117
125
.
21.
Romano
,
L.
,
Vila-Comamala
,
J.
,
Jefimovs
,
K.
, and
Stampanoni
,
M.
,
2017
, “
Effect of Isopropanol on Gold Assisted Chemical Etching of Silicon Microstructures
,”
Microelectron. Eng.
,
177
, pp.
59
65
.
22.
Zana
,
R.
,
1995
, “
Aqueous Surfactant-Alcohol Systems: A Review
,”
Adv. Colloid Interface Sci.
,
57
, pp.
1
64
.
23.
Vazquez
,
G.
,
Alvarez
,
E.
, and
Navaza
,
J. M.
,
1995
, “
Surface Tension of Alcohol Water + Water From 20 to 50 °C
,”
J. Chem. Eng. Data
,
40
(
3
), pp.
611
614
.
You do not currently have access to this content.