Abstract

Silicon carbide (SiC) has been widely utilized in the semiconductor industry for the development of high-power electrical devices. Using chemical vapor deposition to grow a thin epitaxial layer onto the SiC substrate surface with orderly lattice arrangement, good surface morphology, and low doping concentration is required. During epitaxial growth, the high reaction temperature and its distribution are generally difficult to measure and will affect the properties of the epitaxial growth layer. This study presents a thermal-field testing method based on process temperature control rings (PTCRs) to measure the high-temperature distribution inside the epitaxial growth reaction chamber, and to study the effects of reaction chamber structure and epitaxial growth parameters on the quality of the epitaxial layer. The measurement accuracy of PTCRs was characterized using silicon melting experiments and the measuring principle of PTCRs was presented. The thermal field of the reaction chamber was then numerically simulated and compared with experimental results. The experiment results exhibit a temperature gradient of less than 0.4 °C/mm on the surface, indicating good temperature uniformity. Epitaxial growth is an essential process in the fabrication of SiC devices, as it enables the production of layers with precise doping density and thickness. The SiC epitaxial growth experiments were conducted to study the effects of the gas flow ratio and doping flow ratio of three inlet flow channels on the thickness and doping concentration distributions. The results demonstrated that the non-uniformity of thickness and doping concentration of the epitaxial layer were below 1.5% and 4.0%, respectively.

References

1.
Bose
,
B. K.
,
2017
, “
Power Electronics, Smart Grid, and Renewable Energy Systems
,”
Proc. IEEE
,
105
(
11
), pp.
2011
2018
.
2.
Millán
,
J.
,
Godignon
,
P.
,
Perpiñà
,
X.
,
Pérez-Tomás
,
A.
, and
Rebollo
,
J.
,
2014
, “
A Survey of Wide Bandgap Power Semiconductor Devices
,”
IEEE Trans. Power Electron.
,
29
(
5
), pp.
2155
2163
.
3.
Broughton
,
J.
,
Smet
,
V.
,
Tummala
,
R. R.
, and
Joshi
,
Y. K.
,
2018
, “
Review of Thermal Packaging Technologies for Automotive Power Electronics for Traction Purposes
,”
ASME J. Electron. Packag.
,
140
(
4
), p.
040801
.
4.
Shen
,
J.
,
Fu
,
S.
,
Su
,
R.
,
Xu
,
H.
,
Lu
,
Z.
,
Zhang
,
Q.
,
Zeng
,
F.
,
Song
,
C.
,
Wang
,
W.
, and
Pan
,
F.
,
2022
, “
SAW Filters With Excellent Temperature Stability and High Power Handling Using LiTaO3/SiC Bonded Wafers
,”
J. Microelectromech. Syst.
,
31
(
2
), pp.
186
193
.
5.
Liu
,
S.
,
Luo
,
X.
,
Huang
,
B.
,
Li
,
P.
, and
Yang
,
Y.
,
2022
, “
Role of H2 and Ar as the Diluent Gas in Continuous Hot-Wire CVD Synthesis of SiC Fiber
,”
J. Eur. Ceram. Soc.
,
42
(
7
), pp.
3135
3147
.
6.
Codreanu
,
C.
,
Avram
,
M.
,
Carbunescu
,
E.
, and
Iliescu
,
E.
,
2000
, “
Comparison of 3C–SiC, 6H–SiC and 4H–SiC MESFETs Performances
,”
Mater. Sci. Semicond. Process.
,
3
(
1–2
), pp.
137
142
.
7.
Liu
,
G.
,
Tuttle
,
B. R.
, and
Dhar
,
S.
,
2015
, “
Silicon Carbide: A Unique Platform for Metal-Oxide-Semiconductor Physics
,”
Appl. Phys. Rev.
,
2
(
2
), p.
021307
.
8.
Song
,
H.
,
Rana
,
T.
, and
Sudarshan
,
T. S.
,
2011
, “
Investigations of Defect Evolution and Basal Plane Dislocation Elimination in CVD Epitaxial Growth of Silicon Carbide on Eutectic Etched Epilayers
,”
J. Cryst. Growth
,
320
(
1
), pp.
95
102
.
9.
Cavallotti
,
C.
,
Rossi
,
F.
,
Ravasio
,
S.
, and
Masi
,
M.
,
2014
, “
A Kinetic Analysis of the Growth and Doping Kinetics of the SiC Chemical Vapor Deposition Process
,”
Ind. Eng. Chem. Res.
,
53
(
22
), pp.
9076
9087
.
10.
Li
,
J.
,
Yang
,
G.
,
Liu
,
X.
,
Luo
,
H.
,
Xu
,
L.
,
Zhang
,
Y.
,
Cui
,
C.
,
Pi
,
X.
,
Yang
,
D.
, and
Wang
,
R.
,
2022
, “
Dislocations in 4H Silicon Carbide
,”
J. Phys. D: Appl. Phys.
,
55
(
46
), p.
463001
.
11.
Benamara
,
M.
,
Zhang
,
X.
,
Skowronski
,
M.
,
Ruterana
,
P.
,
Nouet
,
G.
,
Sumakeris
,
J. J.
,
Paisley
,
M. J.
, and
O’Loughlin
,
M. J.
,
2005
, “
Structure of the Carrot Defect in 4H-SiC Epitaxial Layers
,”
Appl. Phys. Lett.
,
86
(
2
), p.
021905
.
12.
Kim
,
H.-K.
,
Kim
,
S. I.
,
Kim
,
S.
,
Lee
,
N.-S.
,
Shin
,
H.-K.
, and
Lee
,
C. W.
,
2020
, “
Relation Between Work Function and Structural Properties of Triangular Defects in 4H-SiC Epitaxial Layer: Kelvin Probe Force Microscopic and Spectroscopic Analyses
,”
Nanoscale
,
12
(
15
), pp.
8216
8229
.
13.
Tsuchida
,
H.
,
Kamata
,
I.
,
Miyazawa
,
T.
,
Ito
,
M.
,
Zhang
,
X.
, and
Nagano
,
M.
,
2018
, “
Recent Advances in 4H-SiC Epitaxy for High-Voltage Power Devices
,”
Mater. Sci. Semicond. Process.
,
78
, pp.
2
12
.
14.
Tabuchi
,
Y.
,
Ashida
,
K.
,
Sonoda
,
M.
,
Kaneko
,
T.
,
Ohtani
,
N.
,
Katsuno
,
M.
,
Sato
,
S.
,
Tsuge
,
H.
, and
Fujimoto
,
T.
,
2017
, “
Wide (0001) Terrace Formation Due to Step Bunching on a Vicinal 4H-SiC (0001) Epitaxial Layer Surface
,”
J. Appl. Phys.
,
122
(
7
).
15.
Yang
,
X.
,
Chen
,
X.
,
Peng
,
Y.
,
Hu
,
X.
, and
Xu
,
X.
,
2018
, “
Selective-Area Lateral Epitaxial Overgrowth of SiC by Controlling the Supersaturation in Sublimation Growth
,”
CrystEngComm
,
20
(
12
), pp.
1705
1710
.
16.
Syväjärvi
,
M.
,
Yakimova
,
R.
,
Radamson
,
H. H.
,
Son
,
N. T.
,
Wahab
,
Q.
,
Ivanov
,
I. G.
, and
Janzén
,
E.
,
1999
, “
Liquid Phase Epitaxial Growth of SiC
,”
J. Cryst. Growth
,
197
(
1
), pp.
147
154
.
17.
Davis
,
R. F.
,
Tanaka
,
S.
,
Rowland
,
L.
,
Kern
,
R.
,
Sitar
,
Z.
,
Ailey
,
S.
, and
Wang
,
C.
,
1996
, “
Growth of SiC and III–V Nitride Thin Films Via Gas-Source Molecular Beam Epitaxy and Their Characterization
,”
J. Cryst. Growth
,
164
(
1–4
), pp.
132
142
.
18.
El Khakani
,
M. A.
,
Chaker
,
M.
,
O’Hern
,
M. E.
, and
Oliver
,
W. C.
,
1997
, “
Linear Dependence of Both the Hardness and the Elastic Modulus of Pulsed Laser Deposited a-SiC Films Upon Their Si–C Bond Density
,”
J. Appl. Phys.
,
82
(
9
), pp.
4310
4318
.
19.
Matsunami
,
H.
, and
Kimoto
,
T.
,
1997
, “
Step-C Epitaxial Growth of SiC: High Quality Homoepitaxy
,”
Mater. Sci. Eng. R Rep.
,
20
(
3
), pp.
125
166
.
20.
Choy
,
K. L.
,
2003
, “
Chemical Vapour Deposition of Coatings
,”
Prog. Mater. Sci.
,
48
(
2
), pp.
57
170
.
21.
Thomas
,
B.
,
Bartsch
,
W.
,
Stein
,
R. A.
,
Schörner
,
R.
, and
Stephani
,
D.
,
2004
, “
Properties and Suitability of 4H-SiC Epitaxial Layers Grown at Different CVD Systems for High Voltage Applications
,”
Mater. Sci. Forum
,
457–460
, pp.
181
184
.
22.
Kimoto
,
T.
, and
Cooper
,
J. A.
,
2014
,
Fundamentals of Silicon Carbide Technology: Growth, Characterization, Devices and Applications
,
John Wiley and Sons
,
Hoboken, NJ
.
23.
Steiner
,
J.
, and
Wellmann
,
P. J.
,
2022
, “
Impact of Mechanical Stress and Nitrogen Doping on the Defect Distribution in the Initial Stage of the 4H-SiC PVT Growth Process
,”
Materials
,
15
(
5
), p.
1897
.
24.
Stockmeier
,
M.
,
Müller
,
R.
,
Sakwe
,
S. A.
,
Wellmann
,
P. J.
, and
Magerl
,
A.
,
2009
, “
On the Lattice Parameters of Silicon Carbide
,”
J. Appl. Phys.
,
105
(
3
), p.
033511
.
25.
Tokuda
,
Y.
,
Makino
,
E.
,
Sugiyama
,
N.
,
Kamata
,
I.
,
Hoshino
,
N.
,
Kojima
,
J.
,
Hara
,
K.
, and
Tsuchida
,
H.
,
2016
, “
Stable and High-Speed SiC Bulk Growth Without Dendrites by the HTCVD Method
,”
J. Cryst. Growth
,
448
, pp.
29
35
.
26.
Hoshino
,
N.
,
Kamata
,
I.
,
Tokuda
,
Y.
,
Makino
,
E.
,
Sugiyama
,
N.
,
Kojima
,
J.
, and
Tsuchida
,
H.
,
2014
, “
High-Speed, High-Quality Crystal Growth of 4H-SiC by High-Temperature Gas Source Method
,”
Appl. Phys. Express
,
7
(
6
), p.
065502
.
27.
Shi
,
Y.
,
Dai
,
P.
,
Yang
,
J.
,
Jin
,
Z.
, and
Liu
,
H.
,
2012
, “
Effect of 6H-SiC Crystal Growth Shapes on Thermo-Elastic Stress in the Growing Crystal
,”
Int. J. Miner. Metall. Mater.
,
19
(
7
), pp.
622
627
.
28.
Nishizawa
,
S.-I.
,
Kato
,
T.
, and
Arai
,
K.
,
2007
, “
Effect of Heat Transfer on Macroscopic and Microscopic Crystal Quality in Silicon Carbide Sublimation Growth
,”
J. Cryst. Growth
,
303
(
1
), pp.
342
344
.
29.
Yang
,
S.
,
Zhao
,
S.
,
Chen
,
J.
,
Yan
,
G.
,
Shen
,
Z.
,
Zhao
,
W.
,
Wang
,
L.
, et al
,
2023
, “
Growth of 4H-SiC Epitaxial Layers at Temperatures Below 1500 °C Using Trichlorosilane (TCS)
,”
J. Cryst. Growth
,
612
, p.
127058
.
30.
Li
,
K.-H.
,
Alotaibi
,
H. S.
,
Sun
,
H.
,
Lin
,
R.
,
Guo
,
W.
,
Torres-Castanedo
,
C. G.
,
Liu
,
K.
,
Valdes-Galán
,
S.
, and
Li
,
X.
,
2018
, “
Induction-Heating MOCVD Reactor With Significantly Improved Heating Efficiency and Reduced Harmful Magnetic Coupling
,”
J. Cryst. Growth
,
488
, pp.
16
22
.
31.
Lee
,
Y. H.
,
Kim
,
T.-H.
,
Kim
,
K. H.
, and
Choi
,
S.
,
2023
, “
Two-Dimensional Computational Fluid Dynamics Modeling of Slip-Flow Heat Transfer in the Hot Filament Chemical Vapor Deposition Process
,”
Surf. Coat. Technol.
,
456
, p.
129291
.
32.
Zhang
,
W.
, and
van Duin
,
A. C. T.
,
2020
, “
Atomistic-Scale Simulations of the Graphene Growth on a Silicon Carbide Substrate Using Thermal Decomposition and Chemical Vapor Deposition
,”
Chem. Mater.
,
32
(
19
), pp.
8306
8317
.
33.
Fujibayashi
,
H.
,
Ito
,
M.
,
Ito
,
H.
,
Kamata
,
I.
,
Naito
,
M.
,
Hara
,
K.
,
Yamauchi
,
S.
, et al
,
2014
, “
Development of a 150 mm 4H-SiC Epitaxial Reactor With High-Speed Wafer Rotation
,”
Appl. Phys. Express
,
7
(
1
), p.
015502
.
34.
Cheng
,
L.
,
Xu
,
Y.
,
Zhang
,
L.
, and
Luan
,
X.
,
2002
, “
Oxidation and Defect Control of CVD SiC Coating on Three-Dimensional C/SiC Composites
,”
Carbon
,
40
(
12
), pp.
2229
2234
.
35.
Jin
,
S.
,
Guo
,
C.
,
Lu
,
Y.
,
Zhang
,
R.
,
Wang
,
Z.
, and
Jin
,
M.
,
2017
, “
Comparison of Microwave and Conventional Heating Methods in Carbonization of Polyacrylonitrile-Based Stabilized Fibers at Different Temperature Measured by an In-Situ Process Temperature Control Ring
,”
Polym. Degrad. Stab.
,
140
, pp.
32
41
.
36.
Danielsson
,
Ö
,
Forsberg
,
U.
,
Henry
,
A.
, and
Janzén
,
E.
,
2002
, “
Investigation of the Temperature Profile in a Hot-Wall SiC Chemical Vapor Deposition Reactor
,”
J. Cryst. Growth
,
235
(
1–4
), pp.
352
364
.
37.
Li
,
L.
,
Qi
,
H.
,
Yin
,
Z.
,
Li
,
D.
,
Zhu
,
Z.
,
Tangwarodomnukun
,
V.
, and
Tan
,
D.
,
2020
, “
Investigation on the Multiphase Sink Vortex Ekman Pumping Effects by CFD-DEM Coupling Method
,”
Powder Technol.
,
360
, pp.
462
480
.
38.
Powell
,
A. R.
, and
Rowland
,
L. B.
,
2002
, “
SiC Materials-Progress, Status, and Potential Roadblocks
,”
Proc. IEEE
,
90
(
6
), pp.
942
955
.
39.
Leone
,
S.
,
Beyer
,
F. C.
,
Pedersen
,
H.
,
Kordina
,
O.
,
Henry
,
A.
, and
Janzén
,
E.
,
2010
, “
High Growth Rate of 4H-SiC Epilayers on On-Axis Substrates With Different Chlorinated Precursors
,”
Cryst. Growth Des.
,
10
(
12
), pp.
5334
5340
.
40.
Severino
,
A.
,
Frewin
,
C.
,
Bongiorno
,
C.
,
Anzalone
,
R.
,
Saddow
,
S. E.
, and
La Via
,
F.
,
2009
, “
Structural Defects in (100) 3C-SiC Heteroepitaxy: Influence of the Buffer Layer Morphology on Generation and Propagation of Stacking Faults and Microtwins
,”
Diamond Relat. Mater.
,
18
(
12
), pp.
1440
1449
.
41.
Bhaviripudi
,
S.
,
Jia
,
X.
,
Dresselhaus
,
M. S.
, and
Kong
,
J.
,
2010
, “
Role of Kinetic Factors in Chemical Vapor Deposition Synthesis of Uniform Large Area Graphene Using Copper Catalyst
,”
Nano Lett
,
10
(
10
), pp.
4128
4133
.
42.
Lu
,
C.
,
Cheng
,
L.
,
Zhao
,
C.
,
Zhang
,
L.
, and
Xu
,
Y.
,
2009
, “
Kinetics of Chemical Vapor Deposition of SiC From Methyltrichlorosilane and Hydrogen
,”
Appl. Surf. Sci.
,
255
(
17
), pp.
7495
7499
.
43.
Féron
,
O.
,
Chollon
,
G.
,
Dartigues
,
F.
,
Langlais
,
F.
, and
Naslain
,
R.
,
2002
, “
In Situ Kinetic Analysis of SiC Filaments CVD
,”
Diamond Relat. Mater.
,
11
(
3–6
), pp.
1234
1238
.
You do not currently have access to this content.