Abstract

The high cost of collecting and annotating wafer bin maps (WBMs) necessitates few-shot WBM classification, i.e., classifying WBM defect patterns using a limited number of WBMs. Existing few-shot WBM classification algorithms mainly utilize meta-learning methods that leverage knowledge learned in several episodes. However, meta-learning methods require a large amount of additional real WBMs, which can be unrealistic. To help train a network with a few real-WBMs while avoiding this challenge, we propose the use of simulated WBMs to pre-train a classification model. Specifically, we employ transfer learning by pre-training a classification network with sufficient amounts of simulated WBMs and then fine-tuning it with a few real-WBMs. We further employ ensemble learning to overcome the overfitting problem in transfer learning by fine-tuning multiple sets of classification layers of the network. A series of experiments on a real-dataset demonstrate that our model outperforms the meta-learning methods that are widely used in few-shot WBM classification. Additionally, we empirically verify that transfer and ensemble learning, the two most important yet simple components of our model, reduce the prediction bias and variance in few-shot scenarios without a significant increase in training time.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Yoon
,
H.
, and
Kim
,
H.
,
2023
, “
Label-Noise Robust Deep Generative Model for Semi-Supervised Learning
,”
Technometrics
,
65
(
1
), pp.
83
95
.
2.
Lee
,
H.
,
Lee
,
J.
, and
Kim
,
H.
,
2023
, “
Semi-Supervised Learning for Simultaneous Location Detection and Classification of Mixed-Type Defect Patterns in Wafer Bin Maps
,”
IEEE Trans. Semicond. Manuf.
,
36
(
2
), pp.
220
230
.
3.
Kim
,
J.
,
Lee
,
Y.
, and
Kim
,
H.
,
2018
, “
Detection and Clustering of Mixed-Type Defect Patterns in Wafer Bin Maps
,”
IISE Trans.
,
50
(
2
), pp.
99
111
.
4.
Park
,
S.
,
Kim
,
K.
, and
Kim
,
H.
,
2022
, “
Prediction of Highly Imbalanced Semiconductor Chip-Level Defects Using Uncertainty-Based Adaptive Margin Learning
,”
IISE Trans.
,
55
(
2
), pp.
147
155
.
5.
Cho
,
H.
,
Koo
,
W.
, and
Kim
,
H.
,
2023
, “
Prediction of Highly Imbalanced Semiconductor Chip-Level Defects in Module Tests Using Multimodal Fusion and Logit Adjustment
,”
IEEE Trans. Semicond. Manuf.
,
36
(
3
), pp.
425
433
.
6.
Choi
,
J.
,
Ma
,
E.-Y.
, and
Kim
,
H.
,
2023
, “
Simultaneous Classification and Out-of-Distribution Detection for Wafer Bin Maps
,”
Qual. Eng.
, pp.
1
13
.
7.
Kyeong
,
K.
, and
Kim
,
H.
,
2018
, “
Classification of Mixed-Type Defect Patterns in Wafer Bin Maps Using Convolutional Neural Networks
,”
IEEE Trans. Semicond. Manuf.
,
31
(
3
), pp.
395
402
.
8.
Lee
,
H.
, and
Kim
,
H.
,
2020
, “
Semi-Supervised Multi-label Learning for Classification of Wafer Bin Maps With Mixed-Type Defect Patterns
,”
IEEE Trans. Semicond. Manuf.
,
33
(
4
), pp.
653
662
.
9.
Hyun
,
Y.
, and
Kim
,
H.
,
2020
, “
Memory-Augmented Convolutional Neural Networks With Triplet Loss for Imbalanced Wafer Defect Pattern Classification
,”
IEEE Trans. Semicond. Manuf.
,
33
(
4
), pp.
622
634
.
10.
Hwang
,
J.
, and
Kim
,
H.
,
2020
, “
Variational Deep Clustering of Wafer Map Patterns
,”
IEEE Trans. Semicond. Manuf.
,
33
(
3
), pp.
466
475
.
11.
Kim
,
S.
, and
Kim
,
H.
,
2023
, “
Mixed-Type Defect Pattern Recognition in Noisy Labeled Wafer Bin Maps
,”
Qual. Eng.
, pp.
1
15
.
12.
Pan
,
S. J.
, and
Yang
,
Q.
,
2009
, “
A Survey on Transfer Learning
,”
IEEE Trans. Knowl. Data. Eng.
,
22
(
10
), pp.
1345
1359
.
13.
Chen
,
W.-Y.
,
Liu
,
Y.-C.
,
Kira
,
Z.
,
Wang
,
Y.-C. F.
, and
Huang
,
J.-B.
,
2019
, “
A Closer Look at Few-Shot Classification
,”
7th Inernational Conference on Learning Representations, ICLR 2019
,
New Orlearns, LA
,
May 6–9
.
14.
Tian
,
Y.
,
Wang
,
Y.
,
Krishnan
,
D.
,
Tenenbaum
,
J. B.
, and
Isola
,
P.
,
2021
, “
Rethinking Few-Shot Image Classification: A Good Embedding Is All You Need?
,”
European Conference on Computer Vision (ECCV 2020)
,
Glasgow, UK
,
Aug. 23–28
,
Springer
, pp.
266
282
.
15.
Dietterich
,
T.
,
1995
, “
Overfitting and Undercomputing in Machine Learning
,”
ACM Comput. Surv. (CSUR)
,
27
(
3
), pp.
326
327
.
16.
Sagi
,
O.
, and
Rokach
,
L.
,
2018
, “
Ensemble Learning: A Survey
,”
Wiley Interdisciplinary Rev.: Data Mining and Knowl. Discov.
,
8
(
4
), p.
e1249
.
17.
Wu
,
M.-J.
,
Jang
,
J.-S. R.
, and
Chen
,
J.-L.
,
2014
, “
Wafer Map Failure Pattern Recognition and Similarity Ranking for Large-Scale Data Sets
,”
IEEE Trans. Semicond. Manuf.
,
28
(
1
), pp.
1
12
.
18.
Genssler
,
P. R.
, and
Amrouch
,
H.
,
2021
, “
Brain-Inspired Computing for Wafer Map Defect Pattern Classification
,”
2021 IEEE International Test Conference (ITC)
,
Anaheim, CA
,
Oct. 10–15
,
IEEE
, pp.
123
132
.
19.
Kanerva
,
P.
,
2009
, “
Hyperdimensional Computing: An Introduction to Computing in Distributed Representation With High-Dimensional Random Vectors
,”
Cogn. Comput.
,
1
(
2
), pp.
139
159
.
20.
Zeng
,
Y. J.
,
Wang
,
L. -C.
,
Shan
,
C. J.
, and
Sumikawa
,
N.
,
2020
, “
Learning a Wafer Feature With One Training Sample
,”
2020 IEEE International Test Conference (ITC)
,
Washington, DC
,
Nov. 1–6
,
IEEE
, pp.
1
10
.
21.
Kingma
,
D. P.
, and
Welling
,
M.
,
2014
, “
Auto-Encoding Variational Bayes
,”
2nd International Conference on Learning Representations, ICLR 2014
,
Banff, AB, Canada
,
Apr. 14–16
.
22.
Kong
,
Y.
, and
Ni
,
D.
,
2021
, “
A One-Shot Learning Approach for Similarity Retrieval of Wafer Bin Maps With Unknown Failure Pattern
,”
IEEE Trans. Semicond. Manuf.
,
35
(
1
), pp.
40
49
.
23.
Goodfellow
,
I.
,
Pouget-Abadie
,
J.
,
Mirza
,
M.
,
Xu
,
B.
,
Warde-Farley
,
D.
,
Ozair
,
S.
,
Courville
,
A.
, and
Bengio
,
Y.
,
2020
, “
Generative Adversarial Networks
,”
Commun. ACM
,
63
(
11
), pp.
139
144
.
24.
Sun
,
X.
,
Yang
,
S.
, and
Zhao
,
C.
,
2022
, “
Lightweight Industrial Image Classifier Based on Federated Few-Shot Learning
,”
IEEE Trans. Ind. Inform.
,
19
(
6
), pp.
7367
7376
.
25.
Sung
,
F.
,
Yang
,
Y.
,
Zhang
,
L.
,
Xiang
,
T.
,
Torr
,
P. H.
, and
Hospedales
,
T. M.
,
2018
, “
Learning to Compare: Relation Network for Few-Shot Learning
,”
IEEE/CVF Conference on Computer Vision and Pattern Recognotion (CVPR 2018)
,
Salt Lake City, UT
,
June 18–23
, pp.
1199
1208
.
26.
Yu
,
N.
,
Chen
,
H.
,
Xu
,
Q.
, and
Hasan
,
M. M.
,
2021
, “
Wafer Map Defect Recognition With Few Shot Learning Based on Hybrid Self-Attention Mechanism and Prototype Network
,”
2021 China Automation Congress (CAC)
,
Beijing, China
,
Oct. 22–24
,
IEEE
, pp.
4128
4134
.
27.
Snell
,
J.
,
Swersky
,
K.
, and
Zemel
,
R.
,
2017
, “Prototypical Networks for Few-Shot Learning”. Advances in Neural Information Processing Systems, Vol. 30.
28.
Zhao
,
C.
,
Sun
,
X.
,
Yang
,
S.
,
Ren
,
X.
,
Zhao
,
P.
, and
McCann
,
J.
,
2021
, “
Exploration Across Small Silos: Federated Few-Shot Learning on Network Edge
,”
IEEE Netw.
,
36
(
1
), pp.
159
165
.
29.
Finn
,
C.
,
Abbeel
,
P.
, and
Levine
,
S.
,
2017
, “
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
,”
International Conference on Machine Learning
,
Sydney, Australia
,
Aug. 6–11
,
PMLR
, pp.
1126
1135
.
30.
Chu
,
B.
,
Madhavan
,
V.
,
Beijbom
,
O.
,
Hoffman
,
J.
, and
Darrell
,
T.
,
2016
, “
Best Practices for Fine-Tuning Visual Classifiers to New Domains
,”
European Conference on Computer Vision
,
Amsterdam, The Netherlands
,
Oct. 11–14
,
Springer
, pp.
435
442
.
31.
Zeiler
,
M. D.
, and
Fergus
,
R.
,
2014
, “
Visualizing and Understanding Convolutional Networks
,”
European Conference on Computer Vision
,
Zurich, Switzerland
,
Sept. 6–12
,
Springer
, pp.
818
833
.
32.
Ganaie
,
M. A.
, and
Hu
,
M.
, et al.,
2022
, “
Ensemble Deep Learning: A Review
,”
Eng. Appl. Arti. Intell.
,
115
(C), p.
105151
.
33.
Hansen
,
L. K.
, and
Salamon
,
P.
,
1990
, “
Neural Network Ensembles
,”
IEEE Trans. Pattern. Anal. Mach. Intell.
,
12
(
10
), pp.
993
1001
.
34.
Dietterich
,
T. G.
,
2000
, “
Ensemble Methods in Machine Learning
,”
International Workshop on Multiple Classifier Systems
,
Cagliari, Italy
,
June 21–23
,
Springer
, pp.
1
15
.
35.
Xie
,
J.
,
Xu
,
B.
, and
Chuang
,
Z.
,
2013
, “
Horizontal and Vertical Ensemble With Deep Representation for Classification
,”
Proceedings of the International Conference on Machine Learning Workship on Representation Learning (ICML '13)
,
Atlanta, GA
.
36.
Laine
,
S.
, and
Aila
,
T.
,
2017
, “
Temporal Ensembling for Semi-Supervised Learning
,”
5th International Conference onLearning Representations, ICLR 2017
,
Toulon, France
,
Apr. 24–26
.
37.
Li
,
W.
,
Ding
,
S.
,
Chen
,
Y.
, and
Yang
,
S.
,
2018
, “
Heterogeneous Ensemble for Default Prediction of Peer-to-Peer Lending in China
,”
IEEE Access
,
6
, pp.
54396
54406
.
38.
Mahbod
,
A.
,
Schaefer
,
G.
,
Wang
,
C.
,
Dorffner
,
G.
,
Ecker
,
R.
, and
Ellinger
,
I.
,
2020
, “
Transfer Learning Using a Multi-scale and Multi-network Ensemble for Skin Lesion Classification
,”
Comput. Methods Progr. Biomed.
,
193
, p.
105475
.
39.
Gianchandani
,
N.
,
Jaiswal
,
A.
,
Singh
,
D.
,
Kumar
,
V.
, and
Kaur
,
M.
,
2020
, “
Rapid Covid-19 Diagnosis Using Ensemble Deep Transfer Learning Models From Chest Radiographic Images
,”
J. Amb. Intell. Human. Comput.
,
14
(
5
), pp.
5541
5553
.
40.
Xue
,
D.
,
Zhou
,
X.
,
Li
,
C.
,
Yao
,
Y.
,
Rahaman
,
M. M.
,
Zhang
,
J.
,
Chen
,
H.
,
Zhang
,
J.
,
Qi
,
S.
, and
Sun
,
H.
,
2020
, “
An Application of Transfer Learning and Ensemble Learning Techniques for Cervical Histopathology Image Classification
,”
IEEE Access
,
8
, p.
104603
.
41.
Deng
,
J.
,
Dong
,
W.
,
Socher
,
R.
,
Li
,
L.-J.
,
Li
,
K.
, and
Fei-Fei
,
L.
,
2009
, “
Imagenet: A Large-Scale Hierarchical Image Database
,”
2009 IEEE Conference on Computer Vision and Pattern Recognition
,
Miami, FL
,
June 20–25
,
IEEE
, pp.
248
255
.
42.
Kandaswamy
,
C.
,
Silva
,
L. M.
,
Alexandre
,
L. A.
, and
Santos
,
J. M.
,
2015
, “
Deep Transfer Learning Ensemble for Classification
,”
International Work-Conference on Artificial Neural Networks (IWANN 2015)
,
Palma de Mallorca, Spain
,
June 10–12
,
Springer
, pp.
335
348
.
43.
Yosinski
,
J.
,
Clune
,
J.
,
Bengio
,
Y.
, and
Lipson
,
H.
,
2014
, “How Transferable are Features in Deep Neural Networks?” Advances in Neural Information Processing Systems, Vol. 27.
44.
Postel
,
M.
,
Bugdayci
,
B.
, and
Wegener
,
K.
,
2020
, “
Ensemble Transfer Learning for Refining Stability Predictions in Milling Using Experimental Stability States
,”
Int. J. Adv. Manuf. Technol.
,
107
(
9–10
), pp.
4123
4139
.
45.
Shorten
,
C.
, and
Khoshgoftaar
,
T. M.
,
2019
, “
A Survey on Image Data Augmentation for Deep Learning
,”
J. Big Data
,
6
(
1
), pp.
1
48
.
46.
Ju
,
C.
,
Bibaut
,
A.
, and
van der Laan
,
M.
,
2018
, “
The Relative Performance of Ensemble Methods With Deep Convolutional Neural Networks for Image Classification
,”
J. Appl. Stat.
,
45
(
15
), pp.
2800
2818
.
47.
Zhang
,
Z.
,
Deriche
,
R.
,
Faugeras
,
O.
, and
Luong
,
Q.-T.
,
1995
, “
A Robust Technique for Matching Two Uncalibrated Images Through the Recovery of the Unknown Epipolar Geometry
,”
Artif. Intell.
,
78
(
1-2
), pp.
87
119
.
48.
Simonyan
,
K.
, and
Zisserman
,
A.
,
2015
, “
Very Deep Convolutional Networks for Large-Scale Image Recognition
,”
3rd International Conference on Learning Representations, ICLR 2015
,
San Diego, CA
,
May 7–9
.
49.
Kingma
,
D. P.
, and
Ba
,
J.
,
2014
, “
Adam: A Method for Stochastic Optimization
,”
3rd International Conference on Learning Representations, ICLR 2015
,
San Diego, CA
,
May 7–9
.
50.
He
,
K.
,
Zhang
,
X.
,
Ren
,
S.
, and
Sun
,
J.
,
2015
, “
Delving Deep Into Rectifiers: Surpassing Human-Level Performance on Imagenet Classification
,” Proceedings of the IEEE International Conference on Computer Vision, pp.
1026
1034
.
51.
Vinyals
,
O.
,
Blundell
,
C.
,
Lillicrap
,
T.
, and
Wierstra
,
D.
,
2016
, “
Matching Networks for One Shot Learning
, ”. Advances in Neural Information Processing Systems, 29.
52.
Pedro
,
D.
,
2000
, “
A Unified Bias-Variance Decomposition and Its Applications
,”
17th International Conference on Machine Learning
,
Standford, CA
,
June 29–July 2
, pp.
231
238
.
53.
Liang
,
K. J.
,
Rangrej
,
S. B.
,
Petrovic
,
V.
, and
Hassner
,
T.
,
2022
, “
Few-Shot Learning With Noisy Labels
,” Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
9089
9098
.
You do not currently have access to this content.