Abstract

This article introduces a novel hole edge inspection and metrology technology by edge diffractometry, which occurs when light interacts with the hole edge. The proposed method allows for simultaneous characterization of hole part error and edge roughness conditions. Edge diffraction occurs as light bends at a sharp edge. Such a diffractive fringe pattern, the so-called interferogram, is directly related to edge geometry and roughness. Image-based diffractometry inspection technology was developed to capture the diffractive fringe patterns. The collected fringe patterns were analyzed through statistical feature extraction methods, and numerical results such as roundness index, concentricity, and via edge roughness (VER) were obtained. The results indicated that hole 1 had an average VER of 0.665 μm and a roundness index of 0.95, while hole 2 was measured an average VER of 0.753 μm and a roundness index of 0.96. Through-focus scanning optical microscopy (TSOM) was also utilized to perform three-dimensional characterization of hole features along the depth direction. As a result, the proposed method could characterize hole part error and evaluate its roughness conditions. This study showed the potential to be adapted for automatic optical inspection for advancing microelectronics and semiconductor packaging technology.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Persson
,
E.
,
Eriksson
,
I.
, and
Zackrisson
,
L.
,
1997
, “
Effects of Hole Machining Defects on Strength and Fatigue Life of Composite Laminates
,”
Compos. Part A: Appl. Sci. Manuf.
,
28
(
2
), pp.
141
151
.
2.
Beggs
,
D. M.
,
O’Faolain
,
L.
, and
Krauss
,
T. F.
,
2008
, “
Accurate Determination of the Functional Hole Size in Photonic Crystal Slabs Using Optical Methods
,”
Photon. Nanostruct.-Fundam. Appl.
,
6
(
3–4
), pp.
213
218
.
3.
Dhar
,
N. R.
,
Kamruzzaman
,
M.
, and
Ahmed
,
M.
,
2006
, “
Effect of Minimum Quantity Lubrication (MQL) on Tool Wear and Surface Roughness in Turning AISI-4340 Steel
,”
J. Mater. Process. Technol.
,
172
(
2
), pp.
299
304
.
4.
Mhaede
,
M.
,
2012
, “
Influence of Surface Treatments on Surface Layer Properties, Fatigue and Corrosion Fatigue Performance of AA7075 T73
,”
Mater. Des.
,
41
, pp.
61
66
.
5.
Duan
,
S.
,
Zhang
,
Z.
,
Wei
,
K.
,
Wang
,
F.
, and
Han
,
X.
,
2020
, “
Theoretical Study and Physical Tests of Circular Hole-Edge Stress Concentration in Long Glass Fiber Reinforced Polypropylene Composite
,”
Compos. Struct.
,
236
, p.
111884
.
6.
Bell
,
R.
, and
Greenham
,
A.
,
2001
, “
The Use and Limitations of a Three-Point Bore Gauge for Measuring Woodwind Instrument Bores
,”
Galpin Soc. J.
,
54
, pp.
90
96
.
7.
Burakov
,
V. A.
,
Zorin
,
V. D.
,
D’yachkovskiy
,
A. S.
,
Ishchenko
,
A. N.
,
Sidorov
,
A. D.
, and
Chupashev
,
A. V.
,
2022
, “
Development of a Three-Point Analog-to-Digital Device for Contactless Measurement of Cylindrical Channel Wear
,”
J. Frict. Wear
,
43
(
2
), pp.
135
139
.
8.
Chang
,
W.-T.
,
Su
,
C.-H.
,
Guo
,
D.-X.
,
Tang
,
G.-R.
, and
Shiou
,
F.-J.
,
2013
, “
Automated Optical Inspection for the Runout Tolerance of Circular Saw Blades
,”
Int. J. Adv. Manuf. Technol.
,
66
(
1–4
), pp.
565
582
.
9.
Park
,
J.
,
Kwon
,
K.
, and
Cho
,
N.
,
2006
, “
Development of a Coordinate Measuring Machine (CMM) Touch Probe Using a Multi-Axis Force Sensor
,”
Meas. Sci. Technol.
,
17
(
9
), pp.
2380
2386
.
10.
Liao
,
H. C.
,
Lim
,
Z. Y.
,
Hu
,
Y. X.
, and
Tseng
,
H. W.
,
2018
, “
Guidelines of Automated Optical Inspection (AOI) System Development
,”
2018 IEEE 3rd International Conference on Signal and Image Processing (ICSIP)
,
Shenzhen, China
,
July 13–15
, IEEE, pp.
362
366
.
11.
Bobzin
,
K.
,
Wietheger
,
W.
,
Knoch
,
M. A.
,
Schacht
,
A.
,
Reisgen
,
U.
,
Sharma
,
R.
, and
Oster
,
L.
,
2020
, “
Comparison of Residual Stress Measurements Conducted by X-Ray Stress Analysis and Incremental Hole Drilling Method
,”
J. Therm. Spray Technol.
,
29
(
6
), pp.
1218
1228
.
12.
Redmon
,
J.
,
Divvala
,
S.
,
Girshick
,
R.
, and
Farhadi
,
A.
,
2016
, “
You Only Look Once: Unified, Real-Time Object Detection
,”
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
,
Las Vegas, NV
,
June 27–30
.
13.
Zhang
,
Q.
, and
Liu
,
H.
,
2021
, “
Multi-Scale Defect Detection of Printed Circuit Board Based on Feature Pyramid Network
,”
2021 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA)
,
Dalian, China
,
June 28–30
.
14.
Wang
,
Z.
, and
Lee
,
C.
,
2021
, “
Knife-Edge Interferogram Analysis for Corrosive Wear Propagation at Sharp Edges
,”
Appl. Opt.
,
60
(
5
), p.
1373
.
15.
Wang
,
Z.
,
Chun
,
H.
, and
Lee
,
C.
,
2021
, “
Enhancement of Knife-Edge Interferometry for Edge Topography Characterization
,”
Rev. Sci. Instrum.
,
92
(
12
), p.
125101
.
16.
Wang
,
Z.
,
Lin
,
P.
, and
Lee
,
C.
,
2022
, “
Preliminary Study of Photomask Pattern Inspection by Beam-Shaped Knife-Edge Interferometry
,”
Precis. Eng.
,
77
, pp.
104
109
.
17.
Lee
,
C.
,
Mahajan
,
S. M.
,
Zhao
,
R.
, and
Jeon
,
S.
,
2016
, “
A Curved Edge Diffraction-Utilized Displacement Sensor for Spindle Metrology
,”
Rev. Sci. Instrum.
,
87
(
7
), p.
075113
.
18.
Kim
,
J.
,
Lee
,
S.
,
Chun
,
H.
, and
Lee
,
C.
,
2021
, “
Compact Curved-Edge Displacement Sensor-Embedded Spindle System for Machining Process Monitoring
,”
J. Manuf. Process.
,
64
, pp.
1255
1260
.
19.
Lee
,
C.
,
Lee
,
S.-K.
, and
Tarbutton
,
J. A.
,
2015
, “
Positioning Control Effectiveness of Optical Knife Edge Displacement Sensor-Embedded Monolithic Precision Stage
,”
Sens. Actuators, A
,
233
, pp.
390
396
.
20.
Lee
,
C.
,
Lee
,
S.-K.
, and
Tarbutton
,
J. A.
,
2014
, “
Novel Design and Sensitivity Analysis of Displacement Measurement System Utilizing Knife Edge Diffraction for Nanopositioning Stages
,”
Rev. Sci. Instrum.
,
85
(
9
), p.
095113
.
21.
Zolfaghari
,
A.
,
Jeon
,
S.
,
Stepanick
,
C. K.
, and
Lee
,
C.
,
2017
, “
A Novel Sensor for Two-Degree-of-Freedom Motion Measurement of Linear Nanopositioning Stage Using Knife Edge Displacement Sensing Technique
,”
Rev. Sci. Instrum.
,
88
(
6
), p.
065110
.
22.
Lee
,
C.
,
Jeon
,
S.
,
Stepanick
,
C. K.
,
Zolfaghari
,
A.
, and
Tarbutton
,
J. A.
,
2017
, “
Investigation of Optical Knife Edge Sensor for Low-Cost, Large-Range and Dual-Axis Nanopositioning Stages
,”
Measurement
,
103
, pp.
157
164
.
23.
Jeon
,
S.
,
Stepanick
,
C. K.
,
Zolfaghari
,
A. A.
, and
Lee
,
C.
,
2017
, “
Knife-Edge Interferometry for Cutting Tool Wear Monitoring
,”
Precis. Eng.
,
50
, pp.
354
360
.
24.
Lee
,
C.
,
2019
, “
A First Review of Optical Edge-Diffraction Technology for Precision Dimensional Metrology
,”
Int. J. Adv. Manuf. Technol.
,
102
(
5–8
), pp.
2465
2480
.
25.
Attota
,
R.
,
Germer
,
T. A.
, and
Silver
,
R. M.
,
2008
, “
Through-Focus Scanning-Optical-Microscope Imaging Method for Nanoscale Dimensional Analysis
,”
Opt. Lett.
,
33
(
17
), pp.
1990
1992
.
You do not currently have access to this content.