Abstract

In smart manufacturing, semiconductors play an indispensable role in collecting, processing, and analyzing data, ultimately enabling more agile and productive operations. Given the foundational importance of wafers, the purity of a wafer is essential to maintain the integrity of the overall semiconductor fabrication. This study proposes a novel automated visual inspection (AVI) framework for scrutinizing semiconductor wafers from scratch, capable of identifying defective wafers and pinpointing the location of defects through autonomous data annotation. Initially, this proposed methodology leveraged a texture analysis method known as gray-level co-occurrence matrix (GLCM) that categorized wafer images—captured via a stroboscopic imaging system—into distinct scenarios for high- and low-resolution wafer images. GLCM approaches further allowed for a complete separation of low-resolution wafer images into defective and normal wafer images, as well as the extraction of defect images from defective low-resolution wafer images, which were used for training a convolutional neural network (CNN) model. Consequently, the CNN model excelled in localizing defects on defective low-resolution wafer images, achieving an F1 score—the harmonic mean of precision and recall metrics—exceeding 90.1%. In high-resolution wafer images, a background subtraction technique represented defects as clusters of white points. The quantity of these white points determined the defectiveness and pinpointed locations of defects on high-resolution wafer images. Lastly, the CNN implementation further enhanced performance, robustness, and consistency irrespective of variations in the ratio of white point clusters. This technique demonstrated accuracy in localizing defects on high-resolution wafer images, yielding an F1 score greater than 99.3%.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Kang
,
H. S.
,
Lee
,
J. Y.
,
Choi
,
S.
,
Kim
,
H.
,
Park
,
J. H.
,
Son
,
J. Y.
,
Kim
,
B. H.
, and
Noh
,
S. D.
,
2016
, “
Smart Manufacturing: Past Research, Present Findings, and Future Directions
,”
Int. J. Precis. Eng. Manuf. Green Technol.
,
3
(
1
), pp.
111
128
.
2.
Shankar
,
N. G.
, and
Zhong
,
Z. W.
,
2005
, “
Defect Detection on Semiconductor Wafer Surfaces
,”
Microelectron. Eng.
,
77
(
3–4
), pp.
337
346
.
3.
Huang
,
S. H.
, and
Pan
,
Y. C.
,
2015
, “
Automated Visual Inspection in the Semiconductor Industry: A Survey
,”
Comput. Ind.
,
66
, pp.
1
10
.
4.
Harris
,
D. H.
,
1969
, “
The Nature of Industrial Inspection
,”
Hum. Factors
,
11
(
2
), pp.
139
148
.
5.
Chin
,
R. T.
, and
Harlow
,
C. A.
,
1982
, “
Automated Visual Inspection: A Survey
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
PAMI-4
(
6
), pp.
557
573
.
6.
Megaw
,
E. D.
,
1979
, “
Factors Affecting Visual Inspection Accuracy
,”
Appl. Ergon.
,
10
(
1
), pp.
27
32
.
7.
Babic
,
M.
,
Farahani
,
M. A.
, and
Wuest
,
T.
,
2021
, “
Image Based Quality Inspection in Smart Manufacturing Systems: A Literature Review
,”
Procedia CIRP
,
103
, pp.
262
267
.
8.
Psarommatis
,
F.
,
May
,
G.
,
Dreyfus
,
P.-A.
, and
Kiritsis
,
D.
,
2019
, “
Zero Defect Manufacturing: State-of-the-Art Review, Shortcomings and Future Directions in Research,” Artic
,”
Int. J. Prod. Res.
,
58
(
1
), pp.
1
17
.
9.
LeCun
,
Y.
,
Bengio
,
Y.
, and
Hinton
,
G.
,
2015
, “
Deep Learning
,”
Nature
,
521
(
7553
), pp.
436
444
.
10.
Rusk
,
N.
,
2016
, “
Deep Learning
,”
Nat. Methods
,
13
(
1
), pp.
35
35
.
11.
Wang
,
D.
, and
Shang
,
Y.
,
2014
, “
A New Active Labeling Method for Deep Learning
,”
Proceedings of the International Joint Conference on Neural Networks
,
Beijing, China
,
July 6–11
, pp.
112
119
.
12.
Chow
,
J. K.
,
Su
,
Z.
,
Wu
,
J.
,
Tan
,
P. S.
,
Mao
,
X.
, and
Wang
,
Y. H.
,
2020
, “
Anomaly Detection of Defects on Concrete Structures With the Convolutional Autoencoder
,”
Adv. Eng. Inform.
,
45
, p.
101105
.
13.
Kozamernik
,
N.
, and
Bračun
,
D.
,
2020
, “
Visual Inspection System for Anomaly Detection on KTL Coatings Using Variational Autoencoders
,”
Procedia CIRP
,
93
, pp.
1558
1563
.
14.
Kouteva-Arguirova
,
S.
,
Arguirov
,
T.
,
Wolfframm
,
D.
, and
Reif
,
J.
,
2003
, “
Influence of Local Heating on Micro-Raman Spectroscopy of Silicon
,”
J. Appl. Phys.
,
94
(
8
), pp.
4946
4949
.
15.
Kumar
,
A.
, and
Arnold
,
W.
,
2022
, “
High Resolution in Non-Destructive Testing: A Review
,”
J. Appl. Phys.
,
132
(
10
), p.
100901
.
16.
Hasegawa
,
K.
, and
Saito
,
H.
,
2016
, “
Synthesis of a Stroboscopic Image From a Hand-Held Camera Sequence for a Sports Analysis
,”
Comput. Vis. Media
,
2
(
3
), pp.
277
289
.
17.
Guo
,
X.
, and
Lee
,
C. B.
,
2021
, “
Preliminary Study of Phase-Shifting Strobo-Stereoscopy for Cutting Tool Monitoring
,”
J. Manuf. Process.
,
64
, pp.
1214
1222
.
18.
Zhang
,
L.
,
Tham
,
Z. W.
,
Chen
,
Y. F.
,
Tan
,
C. Y.
,
Cui
,
F.
,
Mutiargo
,
B.
, and
Ke
,
L.
,
2022
, “
Defect Imaging in Carbon Fiber Composites by Acoustic Shearography
,”
Compos. Sci. Technol.
,
223
, p.
109417
.
19.
Grasland-Mongrain
,
P.
,
Zorgani
,
A.
,
Nakagawa
,
S.
,
Bernard
,
S.
,
Paim
,
L. G.
,
Fitzharris
,
G.
,
Catheline
,
S.
, and
Cloutier
,
G.
,
2018
, “
Ultrafast Imaging of Cell Elasticity With Optical Microelastography
,”
Proc. Natl. Acad. Sci. U. S. A.
,
115
(
5
), pp.
861
866
.
20.
Yu
,
Y.
,
Yang
,
Q.
, and
Wang
,
X.
,
2013
, “
3D Imaging Application in the Studies of Micro Air Vehicles
,”
Comput. Ind.
,
64
(
9
), pp.
1178
1185
.
21.
Versluis
,
M.
,
2013
, “
High-Speed Imaging in Fluids
,”
Exp. Fluids
,
54
(
2
), pp.
1
35
.
22.
Brigham
,
E. O.
, and
Morrow
,
R. E.
,
1967
, “
The Fast Fourier Transform
,”
IEEE Spectr.
,
4
(
12
), pp.
63
70
.
23.
Graps
,
A.
,
1995
, “
An Introduction to Wavelets
,”
IEEE Comput. Sci. Eng.
,
2
(
2
), pp.
50
61
.
24.
Singh
,
S. A.
, and
Desai
,
K. A.
,
2023
, “
Automated Surface Defect Detection Framework Using Machine Vision and Convolutional Neural Networks
,”
J. Intell. Manuf.
,
34
(
4
), pp.
1995
2011
.
25.
Yun
,
J. P.
,
Shin
,
W. C.
,
Koo
,
G.
,
Kim
,
M. S.
,
Lee
,
C.
, and
Lee
,
S. J.
,
2020
, “
Automated Defect Inspection System for Metal Surfaces Based on Deep Learning and Data Augmentation
,”
J. Manuf. Syst.
,
55
, pp.
317
324
.
26.
Park
,
J. K.
,
Kwon
,
B. K.
,
Park
,
J. H.
, and
Kang
,
D. J.
,
2016
, “
Machine Learning-Based Imaging System for Surface Defect Inspection
,”
Int. J. Precis. Eng. Manuf. Green Technol.
,
3
(
3
), pp.
303
310
.
27.
Kulkarni
,
A.
, and
Xu
,
C.
,
2021
, “
A Deep Learning Approach in Optical Inspection to Detect Hidden Hardware Trojans and Secure Cybersecurity in Electronics Manufacturing Supply Chains
,”
Front. Mech. Eng.
,
7
.
28.
Nakazawa
,
T.
, and
Kulkarni
,
D. V.
,
2018
, “
Wafer Map Defect Pattern Classification and Image Retrieval Using Convolutional Neural Network
,”
IEEE Trans. Semicond. Manuf.
,
31
(
2
), pp.
309
314
.
29.
Phua
,
C.
, and
Theng
,
L. B.
,
2020
, “
Semiconductor Wafer Surface: Automatic Defect Classification with Deep CNN
,”
IEEE Region 10 Annual International Conference Proceedings/TENCON
,
Osaka, Japan
,
November
, pp.
714
719
.
30.
Wen
,
G.
,
Gao
,
Z.
,
Cai
,
Q.
,
Wang
,
Y.
, and
Mei
,
S.
,
2020
, “
A Novel Method Based on Deep Convolutional Neural Networks for Wafer Semiconductor Surface Defect Inspection
,”
IEEE Trans. Instrum. Meas.
,
69
(
12
), pp.
9668
9680
.
31.
Yun
,
H.
,
Kim
,
H.
,
Jeong
,
Y. H.
, and
Jun
,
M. B. G.
,
2023
, “
Autoencoder-Based Anomaly Detection of Industrial Robot Arm Using Stethoscope Based Internal Sound Sensor
,”
J. Intell. Manuf.
,
34
(
3
), pp.
1427
1444
.
32.
Erhan
,
D.
,
Bengio
,
Y.
,
Courville
,
A.
,
Manzagol
,
P.-A.
, and
Vincent
,
P.
,
2010
, “
Why Does Unsupervised Pre-Training Help Deep Learning?
,”
J. Mach. Learn. Res.
,
11
, pp.
625
660
.
33.
Feng
,
S.
,
Yu
,
H.
, and
Duarte
,
M. F.
,
2020
, “
Autoencoder Based Sample Selection for Self-Taught Learning
,”
Knowl. Based Syst.
,
192
, p.
105343
.
34.
Fan
,
S. K. S.
,
Hsu
,
C. Y.
,
Jen
,
C. H.
,
Chen
,
K. L.
, and
Juan
,
L. T.
,
2020
, “
Defective Wafer Detection Using a Denoising Autoencoder for Semiconductor Manufacturing Processes
,”
Adv. Eng. Inform.
,
46
, p.
101166
.
35.
Yu
,
J.
,
Zheng
,
X.
, and
Liu
,
J.
,
2019
, “
Stacked Convolutional Sparse Denoising Auto-Encoder for Identification of Defect Patterns in Semiconductor Wafer Map
,”
Comput. Ind.
,
109
, pp.
121
133
.
36.
Wang
,
C. H.
,
2009
, “
Separation of Composite Defect Patterns on Wafer Bin Map Using Support Vector Clustering
,”
Expert Syst. Appl.
,
36
(
2
), pp.
2554
2561
.
37.
Schlosser
,
T.
,
Friedrich
,
M.
,
Beuth
,
F.
, and
Kowerko
,
D.
,
2022
, “
Improving Automated Visual Fault Inspection for Semiconductor Manufacturing Using a Hybrid Multistage System of Deep Neural Networks
,”
J. Intell. Manuf.
,
33
(
4
), pp.
1099
1123
.
38.
Paszke
,
A.
,
Gross
,
S.
,
Massa
,
F.
,
Lerer
,
A.
,
Bradbury
,
J.
,
Chanan
,
G.
,
Killeen
,
T.
, et al
,
2019
, “
PyTorch: An Imperative Style, High-Performance Deep Learning Library
,”
Advances in Neural Information Processing Systems 32
,
Vancouver, Canada
,
Dec. 8–14
,
H.
Wallach
,
H.
Larochelle
,
A.
Beygelzimer
,
F.
d’Alché-Buc
,
E.
Fox
, and
R.
Garnett
, eds.,
Curran Associates, Inc
, pp.
8024
8035
.
39.
Holub
,
O.
, and
Ferreira
,
S. T.
,
2006
, “
Quantitative Histogram Analysis of Images
,”
Comput. Phys. Commun.
,
175
(
9
), pp.
620
623
.
40.
Salem
,
N.
,
Malik
,
H.
, and
Shams
,
A.
,
2019
, “
Medical Image Enhancement Based on Histogram Algorithms
,”
Procedia Comput. Sci.
,
163
, pp.
300
311
.
41.
Haralick
,
R. M.
,
1979
, “
Statistical and Structural Approaches to Texture
,”
Proc. IEEE
,
67
(
5
), pp.
786
804
.
42.
Hall-Beyer
,
M.
,
2017
, “
Practical Guidelines for Choosing GLCM Textures to Use in Landscape Classification Tasks Over a Range of Moderate Spatial Scales
,”
Int. J. Remote Sens.
,
38
(
5
), pp.
1312
1338
.
43.
Franklin
,
S. E.
,
Hall
,
R. J.
,
Moskal
,
L. M.
,
Maudie
,
A. J.
, and
Lavigne
,
M. B.
,
2000
, “
Incorporating Texture Into Classification of Forest Species Composition From Airborne Multispectral Images
,”
Int. J. Remote Sens.
,
21
(
1
), pp.
61
79
.
44.
Ozdemir
,
I.
,
Mert
,
A.
, and
Senturk
,
O.
,
2012
, “
Predicting Landscape Structural Metrics Using Aster Satellite Data
,”
J. Environ. Eng. Landsc. Manag.
,
20
(
2
), pp.
168
176
.
45.
Mathew
,
A. R.
,
Anto
,
P. B.
, and
Thara
,
N. K.
,
2017
, “
Brain Tumor Segmentation and Classification Using DWT, Gabour Wavelet and GLCM
,”
2017 International Conference on Intelligent Computing, Instrumentation and Control Technologies (ICICICT)
,
Kerala, India
,
July 6–7
, pp.
1744
1750
.
46.
Hussain
,
A.
, and
Khunteta
,
A.
,
2020
, “
Semantic Segmentation of Brain Tumor From MRI Images and SVM Classification Using GLCM Features
,”
2020 Second International Conference on Inventive Research in Computing Applications (ICIRCA)
,
Coimbatore, India
,
July 15–17
, pp.
38
43
.
47.
Raheja
,
J. L.
,
Kumar
,
S.
, and
Chaudhary
,
A.
,
2013
, “
Fabric Defect Detection Based on GLCM and Gabor Filter: A Comparison
,”
Optik
,
124
(
23
), pp.
6469
6474
.
48.
Yu
,
J.
,
2019
, “
Enhanced Stacked Denoising Autoencoder-Based Feature Learning for Recognition of Wafer Map Defects
,”
IEEE Trans. Semicond. Manuf.
,
32
(
4
), pp.
613
624
.
49.
Yu
,
J.
, and
Lu
,
X.
,
2016
, “
Wafer Map Defect Detection and Recognition Using Joint Local and Nonlocal Linear Discriminant Analysis
,”
IEEE Trans. Semicond. Manuf.
,
29
(
1
), pp.
33
43
.
50.
Saqlain
,
M.
,
Jargalsaikhan
,
B.
, and
Lee
,
J. Y.
,
2019
, “
A Voting Ensemble Classifier for Wafer Map Defect Patterns Identification in Semiconductor Manufacturing
,”
IEEE Trans. Semicond. Manuf.
,
32
(
2
), pp.
171
182
.
51.
Gadkari
,
D.
,
2004
, “
Image Quality Analysis Using GLCM
,”
Electron. Theses Diss. Univ. Cent. Fla.
52.
Sobral
,
A.
, and
Vacavant
,
A.
,
2014
, “
A Comprehensive Review of Background Subtraction Algorithms Evaluated With Synthetic and Real Videos
,”
Comput. Vis. Image Underst.
,
122
, pp.
4
21
.
53.
Bouwmans
,
T.
,
2012
, “
Background Subtraction For Visual Surveillance: A Fuzzy Approach
,”
Handb. Soft Comput. Video Surveill.
, pp.
103
134
.
54.
Bradski
,
G.
,
2000
, “
The OpenCV Library
,” Dr Dobbs J. Softw. Tools.
55.
Trnovszký
,
T.
,
Sýkora
,
P.
, and
Hudec
,
R.
,
2017
, “
Comparison of Background Subtraction Methods on Near Infra-Red Spectrum Video Sequences
,”
Procedia Eng.
,
192
, pp.
887
892
.
56.
Friedman
,
N.
, and
Russell
,
S.
,
2013
,
Image Segmentation in Video Sequences: A Probabilistic Approach
,” CoRR, abs/1302.1539.
57.
Zivkovic
,
Z.
, and
Heijden
,
F. V. D.
,
2006
, “
Efficient Adaptive Density Estimation per Image Pixel for the Task of Background Subtraction
,”
Pattern Recognit. Lett.
,
27
(
7
), pp.
773
780
.
58.
Cubuk
,
E. D.
,
Zoph
,
B.
,
Mane
,
D.
,
Vasudevan
,
V.
, and
Le
,
Q. V.
,
2019
, “
Autoaugment: Learning Augmentation Strategies From Data
,”
Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit.
,
Long Beach, CA
,
June
, pp.
113
123
.
59.
Selvaraju
,
R. R.
,
Cogswell
,
M.
,
Das
,
A.
,
Vedantam
,
R.
,
Parikh
,
D.
, and
Batra
,
D.
,
2020
, “
Grad-CAM: Visual Explanations From Deep Networks via Gradient-Based Localization
,”
Int. J. Comput. Vis.
,
128
(
2
), pp.
336
359
.
60.
Gunning
,
D.
,
Stefik
,
M.
,
Choi
,
J.
,
Miller
,
T.
,
Stumpf
,
S.
, and
Yang
,
G. Z.
,
2019
, “
XAI-Explainable Artificial Intelligence
,”
Sci. Robot.
,
4
(
37
), p.
eaay7120
.
61.
Wang
,
J.
,
Fu
,
P.
, and
Gao
,
R. X.
,
2019
, “
Machine Vision Intelligence for Product Defect Inspection Based on Deep Learning and Hough Transform
,”
J. Manuf. Syst.
,
51
, pp.
52
60
.
62.
Wang
,
J.
,
Li
,
Y.
,
Gao
,
R. X.
, and
Zhang
,
F.
,
2022
, “
Hybrid Physics-Based and Data-Driven Models for Smart Manufacturing: Modelling, Simulation, and Explainability
,”
J. Manuf. Syst.
,
63
, pp.
381
391
.
63.
Cooper
,
C.
,
Zhang
,
J.
,
Huang
,
J.
,
Bennett
,
J.
,
Cao
,
J.
, and
Gao
,
R. X.
,
2023
, “
Tensile Strength Prediction in Directed Energy Deposition Through Physics-Informed Machine Learning and Shapley Additive Explanations
,”
J. Mater. Process. Technol.
,
315
, p.
117908
.
64.
Wang
,
F.
,
Zhao
,
Z.
,
Zhai
,
Z.
,
Shang
,
Z.
,
Yan
,
R.
, and
Chen
,
X.
,
2023
, “
Explainability-Driven Model Improvement for SOH Estimation of Lithium-Ion Battery
,”
Reliab. Eng. Syst. Saf.
,
232
, p.
109046
.
65.
Liu
,
T.
,
Lough
,
C. S.
,
Sehhat
,
H.
,
Ren
,
Y. M.
,
Christofides
,
P. D.
,
Kinzel
,
E. C.
, and
Leu
,
M. C.
,
2022
, “
In-Situ Infrared Thermographic Inspection for Local Powder Layer Thickness Measurement in Laser Powder Bed Fusion
,”
Addit. Manuf.
,
55
, p.
102873
.
66.
Lee
,
J.
,
Noh
,
I.
,
Lee
,
J.
, and
Lee
,
S. W.
,
2022
, “
Development of an Explainable Fault Diagnosis Framework Based on Sensor Data Imagification: A Case Study of the Robotic Spot-Welding Process
,”
IEEE Trans. Ind. Inform.
,
18
(
10
), pp.
6895
6904
.
67.
Perez
,
L.
, and
Wang
,
J.
,
2017
, “
The Effectiveness of Data Augmentation in Image Classification Using Deep Learning
.”
arXiv preprint
. https://arxiv.org/abs/1712.04621
68.
Lee
,
J.
,
Wang
,
P.
,
Xu
,
R.
,
Dasari
,
V.
,
Weston
,
N.
,
Li
,
Y.
,
Bagchi
,
S.
, and
Chaterji
,
S.
,
2021
, “
Virtuoso: Video-Based Intelligence for Real-Time Tuning on SOCs
,”
arXiv preprint
.
You do not currently have access to this content.