Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

This paper introduces a novel wafer-edge quality inspection method based on analysis of curved-edge diffractive fringe patterns, which occur when light is incident and diffracts around the wafer edge. The proposed method aims to identify various defect modes at the wafer edges, including particles, chipping, scratches, thin-film deposition, and hybrid defect cases. The diffraction patterns formed behind the wafer edge are influenced by various factors, including the edge geometry, topography, and the presence of defects. In this study, edge diffractive fringe patterns were obtained from two approaches: (1) a single photodiode collected curved-edge interferometric fringe patterns by scanning the wafer edge and (2) an imaging device coupled with an objective lens captured the fringe image. The first approach allowed the wafer apex characterization, while the second approach enabled simultaneous localization and characterization of wafer quality along two bevels and apex directions. The collected fringe patterns were analyzed by both statistical feature extraction and wavelet transform; corresponding features were also evaluated through logarithm approximation. In sum, both proposed wafer-edge inspection methods can effectively characterize various wafer-edge defect modes. Their potential lies in their applicability to online wafer metrology and inspection applications, thereby contributing to the advancement of wafer manufacturing processes.

References

1.
IEEE
,
2020
,
International Roadmap for Devices and Systems TM
,
IEEE Press
,
Piscataway, NJ
.
2.
Kim
,
T.-H.
,
Oh
,
J.
,
Yoo
,
H.
,
Kim
,
D.
, and
Torelli
,
T.
,
2016
, “
Criticality of Wafer Edge Inspection and Metrology Data to All-Surface Defectivity Root Cause and Yield Analysis
,”
Proceedings of the Advanced Semiconductor Manufacturing Conference (ASMC'16)
,
Saratoga Springs, NY
,
May 16–19
.
3.
Zhu
,
J.
,
Liu
,
J.
,
Xu
,
T.
,
Yuan
,
S.
,
Zhang
,
Z.
,
Jiang
,
H.
,
Gu
,
H.
,
Zhou
,
R.
, and
Liu
,
S.
,
2022
, “
Optical Wafer Defect Inspection at the 10 nm Technology Node and Beyond
,”
Int. J. Extreme Manuf.
,
4
(
3
), p.
032001
.
4.
Burkeen
,
F.
,
Vedula
,
S.
, and
Meeks
,
S.
,
2007
, “
Visualizing the Wafer’s Edge
,” KLA-Tencor Yield Management Solutions Magazine, pp.
18
20
.
5.
Morillo
,
J. D.
,
Houghton
,
T.
,
Bauer
,
J. M.
,
Smith
,
R.
, and
Shay
,
R.
,
2005
, “
Edge and Bevel Automated Defect Inspection for 300 mm Production Wafers in Manufacturing
,”
Proceedings of the IEEE/SEMI Conference and Workshop on Advanced Semiconductor Manufacturing 2005
,
Munich, Germany
,
IEEE
, pp.
49
52
.
6.
Porat
,
R.
,
Dotan
,
K.
,
Hemar
,
S.
,
Levin
,
L.
,
Li
,
K.
,
Sung
,
G.
,
Lin
,
C.-T.
,
Lin
,
S.-K.
, and
Wang
,
H.-I.
,
2008
, “
SEM-Based Methodology for Root Cause Analysis of Wafer Edge and Bevel Defects
,”
Proceedings of the 2008 IEEE/SEMI Advanced Semiconductor Manufacturing Conference
,
Cambridge, MA
,
IEEE
, pp.
11
14
.
7.
Altamirano
,
M.
, and
Skumanich
,
A.
,
1998
, “
Enhanced Defect Detection Capability Using Combined Brightfield/Darkfield Imaging
,”
In-Line Characterization Techniques for Performance and Yield Enhancement in Microelectronic Manufacturing II
, Vol.
3509
.
SPIE
, pp.
60
64
.
8.
Pan
,
B.
,
Yang
,
Y.
,
Bian
,
J.
,
Hu
,
X.
, and
Zhang
,
W.
,
2019
, “
Quantum dot Decorated Nano-Pyramid Fiber Tip for Scanning Near-Field Optical Microscopy
,”
Opt. Commun.
,
445
(
15
), pp.
273
276
.
9.
Bek
,
A.
,
Vogelgesang
,
R.
, and
Kern
,
K.
,
2006
, “
Apertureless Scanning Near Field Optical Microscope With Sub-10 nm Resolution
,”
Rev. Sci. Instrum.
,
77
(
4
), p.
043703
.
10.
Purandare
,
S.
,
Zhu
,
J.
,
Zhou
,
R.
,
Popescu
,
G.
,
Schwing
,
A.
, and
Goddard
,
L. L.
,
2019
, “
Optical Inspection of Nanoscale Structures Using a Novel Machine Learning Based Synthetic Image Generation Algorithm
,”
Opt. Express
,
27
(
13
), pp.
17743
17762
.
11.
Wang
,
T.
,
Chen
,
Y.
,
Qiao
,
M.
, and
Snoussi
,
H.
,
2018
, “
A Fast and Robust Convolutional Neural Network-Based Defect Detection Model in Product Quality Control
,”
Int. J. Adv. Manuf. Technol.
,
94
(
9–12
), pp.
3465
3471
.
12.
Chien
,
J.-C.
,
Wu
,
M.-T.
, and
Lee
,
J.-D.
,
2020
, “
Inspection and Classification of Semiconductor Wafer Surface Defects Using CNN Deep Learning Networks
,”
Appl. Sci.
,
10
(
15
), p.
5340
.
13.
Cheon
,
S.
,
Lee
,
H.
,
Kim
,
C. O.
, and
Lee
,
S. H.
,
2019
, “
Convolutional Neural Network for Wafer Surface Defect Classification and the Detection of Unknown Defect Class
,”
IEEE Trans. Semicond. Manuf.
,
32
(
2
), pp.
163
170
.
14.
Li
,
Y.
,
Yang
,
J.
,
Pan
,
Z.
, and
Tong
,
W.
,
2020
, “
Nanoscale Pore Structure and Mechanical Property Analysis of Coal: An Insight Combining AFM and SEM Images
,”
Fuel
,
260
(
15
), p.
116352
.
15.
Madsen
,
J.
,
Liu
,
P.
,
Kling
,
J.
,
Wagner
,
J. B.
,
Hansen
,
T. W.
,
Winther
,
O.
, and
Schiøtz
,
J.
,
2018
, “
A Deep Learning Approach to Identify Local Structures in Atomic-Resolution Transmission Electron Microscopy Images
,”
Adv. Theory Simul.
,
1
(
8
), p.
1800037
.
16.
Zhang
,
D.
,
Zhu
,
Y.
,
Liu
,
L.
,
Ying
,
X.
,
Hsiung
,
C.-E.
,
Sougrat
,
R.
,
Li
,
K.
, and
Han
,
Y.
,
2018
, “
Atomic-Resolution Transmission Electron Microscopy of Electron Beam–Sensitive Crystalline Materials
,”
Science
,
359
(
6376
), pp.
675
679
.
17.
Iida
,
S.
,
Nagai
,
T.
, and
Uchiyama
,
T.
,
2019
, “
Standard Wafer With Programed Defects to Evaluate the Pattern Inspection Tools for 300-mm Wafer Fabrication for 7-nm Node and Beyond
,”
J. Micro/Nanolithogr. MEMS MOEMS
,
18
(
2
), pp.
023505
023505
.
18.
Kolenov
,
D.
, and
Pereira
,
S. F.
,
2020
, “
Machine Learning Techniques Applied for the Detection of Nanoparticles on Surfaces Using Coherent Fourier Scatterometry
,”
Opt. Express
,
28
(
13
), pp.
19163
19186
.
19.
Lee
,
C.
,
Lee
,
S.-K.
, and
Tarbutton
,
J. A.
,
2014
, “
Novel Design and Sensitivity Analysis of Displacement Measurement System Utilizing Knife Edge Diffraction for Nanopositioning Stages
,”
Rev. Sci. Instrum.
,
85
(
9
), p.
095113
.
20.
Lee
,
C.
,
Lee
,
S.-K.
, and
Tarbutton
,
J. A.
,
2015
, “
Positioning Control Effectiveness of Optical Knife Edge Displacement Sensor-Embedded Monolithic Precision Stage
,”
Sens. Actuators, A
,
233
(
1
), pp.
390
396
.
21.
Lee
,
C.
,
Jeon
,
S.
,
Stepanick
,
C. K.
,
Zolfaghari
,
A.
, and
Tarbutton
,
J. A.
,
2017
, “
Investigation of Optical Knife Edge Sensor for Low-Cost, Large-Range and Dual-Axis Nanopositioning Stages
,”
Measurement
,
103
, pp.
157
164
.
22.
Zolfaghari
,
A.
,
Jeon
,
S.
,
Stepanick
,
C. K.
, and
Lee
,
C.
,
2017
, “
A Novel Sensor for Two-Degree-of-Freedom Motion Measurement of Linear Nanopositioning Stage Using Knife Edge Displacement Sensing Technique
,”
Rev. Sci. Instrum.
,
88
(
6
), p.
065110
.
23.
Jeon
,
S.
,
Stepanick
,
C. K.
,
Zolfaghari
,
A. A.
, and
Lee
,
C.
,
2017
, “
Knife-Edge Interferometry for Cutting Tool Wear Monitoring
,”
Precis. Eng.
,
50
, pp.
354
360
.
24.
Jeon
,
S.
,
Zolfaghari
,
A.
, and
Lee
,
C.
,
2018
, “
Dicing Wheel Wear Monitoring Technique Utilizing Edge Diffraction Effect
,”
Measurement
,
121
(
5
), pp.
139
143
.
25.
Wang
,
Z.
, and
Lee
,
C.
,
2021
, “
Knife-Edge Interferogram Analysis for Corrosive Wear Propagation at Sharp Edges
,”
Appl. Opt.
,
60
(
5
), pp.
1373
1379
.
26.
Wang
,
Z.
,
Chun
,
H.
, and
Lee
,
C.
,
2021
, “
Enhancement of Knife-Edge Interferometry for Edge Topography Characterization
,”
Rev. Sci. Instrum.
,
92
(
12
), p.
125101
.
27.
Wang
,
Z.
,
Lin
,
P.
, and
Lee
,
C.
,
2022
, “
Preliminary Study of Photomask Pattern Inspection by Beam-Shaped Knife-Edge Interferometry
,”
Precis. Eng.
,
77
, pp.
104
109
.
28.
Lee
,
C.
,
Mahajan
,
S. M.
,
Zhao
,
R.
, and
Jeon
,
S.
,
2016
, “
A Curved Edge Diffraction-Utilized Displacement Sensor for Spindle Metrology
,”
Rev. Sci. Instrum.
,
87
(
7
), p.
075113
.
29.
Lee
,
C.
,
Zhao
,
R.
, and
Jeon
,
S.
,
2017
, “
A Simple Optical System for Miniature Spindle Runout Monitoring
,”
Measurement
,
102
, pp.
42
46
.
30.
Kim
,
J.
,
Lee
,
S.
,
Chun
,
H.
, and
Lee
,
C.
,
2021
, “
Compact Curved-Edge Displacement Sensor-Embedded Spindle System for Machining Process Monitoring
,”
J. Manuf. Processes
,
64
, pp.
1255
1260
.
31.
Wang
,
Z.
,
Lin
,
P.
,
Nguyen
,
P.
,
Wang
,
J.
, and
Lee
,
C.
,
2024
, “
Line-Edge-Roughness Characterization of Photomask Patterns and Lithography-Printed Patterns
,”
Precis. Eng. J.
,
88
, pp.
235
240
.
32.
Lee
,
C.
,
Zolfaghari
,
A.
,
Kim
,
G. H.
, and
Jeon
,
S.
,
2019
, “
An Optical Measurement Technique for Dynamic Stiffness and Damping of Precision Spindle System
,”
Measurement
,
131
, pp.
61
68
.
33.
Lee
,
C.
,
2019
, “
A First Review of Optical Edge-Diffraction Technology for Precision Dimensional Metrology
,”
Int. J. Adv. Manuf. Technol.
,
102
(
5–8
), pp.
2465
2480
.
34.
Zhang
,
Y.
, and
Leithead
,
W. E.
,
2007
, “
Approximate Implementation of the Logarithm of the Matrix Determinant in Gaussian Process Regression
,”
J. Stat. Comput. Simul.
,
77
(
4
), pp.
329
348
.
35.
Mallat
,
S.
,
2012
, “
Group Invariant Scattering
,”
Commun. Pure Appl. Math.
,
65
(
10
), pp.
1331
1398
.
36.
Andén
,
J.
, and
Mallat
,
S.
,
2014
, “
Deep Scattering Spectrum
,”
IEEE Trans. Signal Process.
,
62
(
16
), pp.
4114
4128
.
37.
Narayan
,
S. K.
,
Vithin
,
A. V.S.
, and
Gannavarpu
,
R.
,
2023
, “
Deep Learning Assisted Non-Contact Defect Identification Method Using Diffraction Phase Microscopy
,”
Appl. Opt.
,
62
(
20
), pp.
5433
5442
.
38.
Pandey
,
D.
,
Ramaiah
,
J.
,
Ajithaprasad
,
S.
, and
Gannavarpu
,
R.
,
2022
, “
Subspace Analysis Based Machine Learning Method for Automated Defect Detection From Fringe Patterns
,”
Optik
,
270
, p.
170026
.
39.
Vishnoi
,
A.
,
Madipadaga
,
A.
,
Ajithaprasad
,
S.
, and
Gannavarpu
,
R.
,
2021
, “
Automated Defect Identification From Carrier Fringe Patterns Using Wigner–Ville Distribution and a Machine Learning-Based Method
,”
Appl. Opt.
,
60
(
15
), pp.
4391
4397
.
You do not currently have access to this content.