Abstract

For carbon fiber-reinforced plastic (CFRP) composites, controlling the interior fiber distribution and orientation during the manufacturing process is a common approach to optize the structural performance of fabricated parts. However, few studies have been conducted to investigate fiber alignment during the additive manufacturing of CFRP composites. This study proposes a magnetic field controlled (MFC) method to control the fiber orientation during the fused filament fabrication (FFF) of nickel-coated carbon fiber (NCF) reinforced polymer composites. Firstly, a theoretical analysis model is established to explore the suitable magnetic field intensity for fiber rotation. Secondly, a customized FFF system with MFC components is implemented, and a polylactic acid matrix composite containing 10 wt% NCF is printed to validate the feasibility of the proposed approach. The microstructure of the printed samples is examined to assess the effectiveness of the method. Finally, uniaxial tensile tests are performed to investigate the impact of fiber orientation adjustment on mechanical properties. The experimental results reveal that the MFC method can effectively align the interior fiber orientation of CFRP composites, leading to a significant increase in the tensile strength (approximately 8.8%) and Young's modulus (around 10.5%) of the printed samples.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Blok
,
L. G.
,
Longana
,
M. L.
,
Yu
,
H.
, and
Woods
,
B. K. S.
,
2018
, “
An Investigation into 3D Printing of Fibre Reinforced Thermoplastic Composites
,”
Addit. Manuf.
,
22
, pp.
176
186
.
2.
Elway
,
A.
,
2023
, “
In-Space Additive Manufacturing: A Review
,”
ASME J. Manuf. Sci. Eng.
,
145
(
2
), p.
020801
.
3.
Cattenone
,
A.
,
Morganti
,
S.
,
Alaimo
,
G.
, and
Auricchio
,
F.
,
2019
, “
Finite Element Analysis of Additive Manufacturing Based on Fused Deposition Modeling: Distortions Prediction and Comparison with Experimental Data
,”
ASME J. Manuf. Sci. Eng.
,
141
(
1
), p.
011010
.
4.
Yang
,
L.
,
Hsu
,
K.
,
Baughman
,
B.
,
Godfrey
,
D.
,
Medina
,
F.
,
Menon
,
M.
, and
Wiener
,
S.
,
2017
,
Additive MAnufacturing of Metals: The Technology, Materials, Design and Production
,
Springer International Publishing
,
New York
.
5.
Che
,
D.
,
Saxena
,
I.
,
Han
,
P.
,
Guo
,
P.
, and
Ehmann
,
K. F.
,
2014
, “
Machining of Carbon Fiber Reinforced Plastics/Polymers: A Literature Review
,”
ASME J. Manuf. Sci. Eng.
,
136
(
3
), p.
034001
.
6.
Wang
,
B. B. M.
,
Ma
,
S. Q.
,
Yan
,
S. F.
, and
Zhu
,
J.
,
2019
, “
Readily Recyclable Carbon Fiber Reinforced Composites Based on Degradable Thermosets: A Review
,”
Green Chem.
,
21
(
21
), pp.
5781
5796
.
7.
Chandra
,
R.
,
Singh
,
S. P.
, and
Gupta
,
K.
,
1999
, “
Damping Studies in Fiber-Reinforced Composites A Review
,”
Compos. Struct.
,
46
(
1
), pp.
41
51
.
8.
Li
,
W. Y.
,
Huang
,
Y.
,
Chen
,
L.
,
Chen
,
X. H.
,
Zhang
,
G. J.
, and
Rong
,
Y. M.
,
2022
, “
Effect of Anisotropy on the Quality of Laser Cutting Corner of CFRP Plate
,”
ASME J. Manuf. Sci. Eng.
,
144
(
11
), p.
111003
.
9.
Pappas
,
J. M.
,
Thakur
,
A. R.
,
Leu
,
M. C.
, and
Dong
,
X. Y.
,
2021
, “
A Comparative Study of Pellet-Based Extrusion Deposition of Short, Long, and Continuous Carbon Fiber-Reinforced Polymer Composites for Large-Scale Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
143
(
7
), p.
071012
.
10.
Zhang
,
Z. S.
,
Long
,
Y.
,
Yang
,
Z.
,
Fu
,
K. K.
, and
Li
,
Y.
,
2022
, “
An Investigation into Printing Pressure of 3D Printed Continuous Carbon Fiber Reinforced Composites
,”
Composites Part A
,
162
, p.
107162
.
11.
Ming
,
Y. K.
,
Zhang
,
S. Q.
,
Han
,
W.
,
Wang
,
B.
,
Duan
,
Y. G.
, and
Xiao
,
H.
,
2020
, “
Investigation on Process Parameters of 3D Printed Continuous Carbon Fiber-Reinforced Thermosetting Epoxy Composites
,”
Addit. Manuf.
,
33
, p.
101184
.
12.
Yang
,
Z. H.
,
Yang
,
Z. S.
,
Chen
,
H.
, and
Yan
,
W. T.
,
2022
, “
3D Printing of Short Fiber Reinforced Composites Via Material Extrusion: Fiber Breakage
,”
Addit. Manuf.
,
58
, p.
103067
.
13.
Anwer
,
A.
, and
Naguib
,
H. E.
,
2018
, “
Multi-Functional Flexible Carbon Fiber Composites With Controlled Fiber Alignment Using Additive Manufacturing
,”
Addit. Manuf.
,
22
, pp.
360
367
.
14.
Zhang
,
H.
,
Zhang
,
L. X.
,
Zhang
,
H. Q.
,
Wu
,
J.
,
An
,
X. Z.
, and
Yang
,
D. M.
,
2021
, “
Fibre Bridging and Nozzle Clogging in 3D Printing of Discontinuous Carbon Fiber-Reinforced Polymer Composites: Coupled CFD-DEM Modelling
,”
Int. J. Adv. Manuf. Technol.
,
117
(
11–12
), pp.
3549
3562
.
15.
Asif
,
S.
,
Chansoria
,
P.
, and
Shirwaiker
,
R.
,
2020
, “
Ultrasound-Assisted Vat Photopolymerization 3D Printing of Preferentially Organized Carbon Fiber Reinforced Polymer Composites
,”
J. Manuf. Processes
,
56
, pp.
1340
1343
.
16.
Stanier
,
D. C.
,
Ciambella
,
J.
, and
Rahatekar
,
S. S.
,
2016
, “
Fabrication and Characterisation of Short Fibre Reinforced Elastomer Composites for Bending and Twisting Magnetic Actuation
,”
Composites Part A
,
91
, pp.
168
176
.
17.
Raney
,
J. R.
,
Compton
,
B. G.
,
Mueller
,
J.
,
Ober
,
T. J.
,
Shea
,
K.
, and
Lewis
,
J. A.
,
2017
, “
Rotational 3D Printing of Damage-Tolerant Composites with Programmable Mechanics
,”
Proc. Nat. Acad. Sci. U.S.A.
,
115
(
6
), pp.
1198
1203
.
18.
Kokkinis
,
D.
,
Schaffner
,
M.
, and
Studart
,
A. R.
,
2015
, “
Multimaterial Magnetically Assisted 3D Printing of Composite Materials
,”
Nat. Commun.
,
6
(
1
), p.
8643
.
19.
Kim
,
T.
,
Trangkanukulkij
,
R.
, and
Kim
,
W. S.
,
2018
, “
Nozzle Shape Guided Filler Orientation in 3Dprinted Photo-Curable Nanocomposites
,”
Sci. Rep.-UK
,
8
(
1
), p.
3805
.
20.
Ober
,
T. J.
,
Foresti
,
D.
, and
Lewis
,
J. A.
,
2015
, “
Active Mixing of Complex Fluids at The Microscale
,”
Proc. Nat. Acad. Sci. U.S.A.
,
112
(
40
), pp.
12293
12298
.
21.
Armstrong
,
C. D.
,
Todd
,
N.
,
Alsharhan
,
A. T.
,
Bigio
,
D. I.
, and
Sochol
,
R. D.
,
2021
, “
A 3D Printed Morphing Nozzle to Control Fiber Orientation During Composite Additive Manufacturing
,”
Adv. Mater. Technol.-US
,
6
(
1
), p.
2000829
.
22.
Compton
,
B. G.
, and
Lewis
,
J. A.
,
2014
, “
3D-Printing of Lightweight Cellular Composites
,”
Adv. Mater.
,
26
(
34
), pp.
5930
5935
.
23.
Feilden
,
E.
,
Ferraro
,
C.
,
Zhang
,
Q.
,
García-Tuñón
,
E.
,
D’Elia
,
E.
,
Giuliani
,
F.
,
Vandperre
,
L.
, et al
,
2017
, “
3D Printing Bioinspired Ceramic Composites
,”
Sci. Rep.-UK
,
7
(
1
), p.
13759
.
24.
Zhang
,
X.
,
Zhang
,
J.
,
Xia
,
L.
,
Wang
,
J.
,
Li
,
C.
,
Xu
,
F.
,
Zhang
,
X. L.
, et al
,
2018
, “
Achieving High-Efficiency and Robust 3D Thermally Conductive While Electrically Insulating Hybrid Filler Network with High Orientation and Ordered Distribution
,”
Chem. Eng. J.
,
334
, pp.
247
256
.
25.
Cieslinski
,
M. J.
,
Wapperom
,
P.
, and
Baird
,
D. G.
, “
Fiber Orientation Evolution in Simple Shear Flow From a Repeatable Initial Fiber Orientation
,”
J. Non-Newtonian Fluid Mech.
,
237
, pp.
65
75
.
26.
Yang
,
Y.
,
Chen
,
Z. Y.
,
Song
,
X.
,
Zhang
,
Z. F.
,
Zhang
,
J.
,
Shung
,
K. K.
,
Zhou
,
Q. F.
, et al
,
2017
, “
Biomimetic Anisotropic Reinforcement Architectures by Electrically Assisted Nanocomposite 3D Printing
,”
Adv. Mater.
,
29
(
11
), p.
28185341
.
27.
Ren
,
L.
,
Zhou
,
X.
,
Xue
,
J.
,
Song
,
Z.
,
Li
,
B.
,
Liu
,
Q.
, and
Zhao
,
C.
,
2019
, “
Thermal Metamaterials With Site-Specific Thermal Properties Fabricated by 3D Magnetic Printing
,”
Adv. Mater. Technol.-US
,
4
(
7
), p.
1900296
.
28.
Martin
,
J. J.
,
Riederer
,
M. S.
,
Krebs
,
M. D.
, and
Erb
,
R. M.
,
2015
, “
Understanding and Overcoming Shear Alignment of Fibers During Extrusion
,”
Soft Matter
,
11
(
2
), pp.
400
405
.
29.
Erb
,
R. M.
,
Segmehl
,
J.
,
Charilaou
,
M.
,
Löffler
,
J. F.
, and
Studart
,
A. R.
,
2012
, “
Non-Linear Alignment Dynamics in Suspensions of Platelets Under Rotating Magnetic Fields
,”
Soft Matter
,
8
(
29
), pp.
7604
7609
.
30.
Sommacal
,
S.
,
Matschinski
,
A.
,
Drechsler
,
K.
, and
Compston
,
P.
,
2021
, “
Characterization of Void and Fiber Distribution in 3D Printed Carbon-Fiber/PEEK Using X-Ray Computed Tomography
,”
Composites Part A
,
149
, p.
106487
.
31.
Heller
,
B. P.
,
Smith
,
D. E.
, and
Jack
,
D. A.
,
2019
, “
Planar Deposition Flow Modeling of Fiber Filled Composites in Large Area Additive Manufacturing
,”
Addit. Manuf.
,
25
, pp.
227
238
.
32.
Bay
,
R. S.
, and
Tucker
,
C. L.
,
1992
, “
Stereological Measurement and Error Estimate for Three-Dimensional Fiber Orientation
,”
Polymer Eng. Sci.
,
32
(
4
), pp.
240
253
.
33.
Pei
,
S. L.
,
Wang
,
K. F.
,
Li
,
J. J.
,
Li
,
Y.
,
Zeng
,
D.
,
Su
,
X. M.
,
Xiao
,
X. H.
, et al
,
2020
, “
Mechanical Properties Prediction of Injection Molded Short/Long Carbon Fiber Reinforced Polymer Composites Using Micro X-ray Computed Tomography
,”
Composites Part A
,
130
, p.
105732
.
34.
A. International
,
2010
, “ASTM, designation.” D638-10 standard test method for tensile properties of plastics.
35.
Nadir
,
A.
,
Mirko
,
K.
,
Jin
,
H. K.
, and
Manja
,
K. K.
,
2019
, “
Effect of Printing Layer Thickness on Water Absorption and Mechanical Properties of 3D-Printed Wood/PLA Composite Materials
,”
Int. J. Adv. Manuf. Technol.
,
102
(
5–8
), pp.
2195
2200
.
You do not currently have access to this content.