Abstract

Process capability indices (PCIs) are major tools in geometric dimensioning and tolerancing (GD&T) for quantifying the production quality, monitoring production, or prioritizing projects. Initially, PCIs were constructed for studying each characteristic of the process independently. Then, they have been extended to analyze several dependent characteristics simultaneously. Nowadays, with the increasing complexity of the production parts, for example, in aircraft engines, the conformity of one part may rely on the conformity of hundreds of characteristics. Also, because those characteristics are dependent, it may be misleading to make decisions based only on univariate PCIs. However, classical multivariate PCIs in the literature do not allow treating such amount of data efficiently, unless assuming Gaussian distribution, which may be false. Regarding those issues, we advocate for PCI based on some transformation of the conformity rates. This presents the advantage of being free from distributional assumptions, such as the Gaussian distribution. In addition, it has direct interpretation, allowing it to compare different processes. To estimate the PCIs of parts with hundreds of characteristics, we propose to use Vine Copulas. This is a very flexible class of models, which gives precise estimation even in high dimension. From an industrial perspective, the computation of the estimator can be costly. To answer this point, one explains how to compute a lower bound of the proposed PCI, which is faster to calculate. We illustrate our method adaptability with simulations under Gaussian and non-Gaussian distributions. We apply it to compare the production of fan blades of two different factories.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Chakraborty
,
A. K.
, and
Chatterjee
,
M.
,
2021
,
Handbook of Multivariate Process Capability Indices
,
Chapman and Hall/CRC
,
New York
.
2.
Daniels
,
L.
,
Edgar
,
B.
,
Burdick
,
R. K.
, and
Hubele
,
N. F.
,
2004
, “
Using Confidence Intervals to Compare Process Capability Indices
,”
Qual. Eng.
,
17
(
1
), pp.
23
32
.
3.
ISO
,
2013
,
Statistical Methods in Process Management Capability and Performance. Part 6: Process Capability Statistics for Characteristics Following a Multivariate Normal Distribution
,
International Organization for Standardization
.
4.
Croquelois
,
M.
,
Ferraris
,
C.
,
Achibi
,
M.
, and
Thiebaut
,
F.
,
2022
, “
Process Capability Indices With Student Mixture Models Applied to Aircraft Engines GD&T
,”
ASME J. Manuf. Sci. Eng.
,
144
(
10
), p.
101008
.
5.
Bedford
,
T.
, and
Cooke
,
R. M.
,
2002
, “
Vines: A New Graphical Model for Dependent Random Variables
,”
Ann. Stat.
,
30
(
4
), pp.
1031
1068
, Publisher: Institute of Mathematical Statistics.
6.
Stöber
,
J.
,
Joe
,
H.
, and
Czado
,
C.
,
2013
, “
Simplified Pair Copula Constructions—Limitations and Extensions
,”
J. Multivar. Anal.
,
119
, pp.
101
118
.
7.
Lépine
,
M. J.
, and
Tahan
,
A. S.
,
2016
, “
The Relationship Between Geometrical Complexity and Process Capability
,”
ASME J. Manuf. Sci. Eng.
,
138
(
5
), p.
051009
.
8.
ISO
,
2021
,
Geometrical Product Specifications (GPS) - Geometrical Tolerancing – Maximum Material Requirement (MMR), Least Material Requirement (LMR) and Reciprocity Requirement (RPR)
,
International Organization for Standardization
.
9.
Diplaris
,
S. C.
, and
Sfantsikopoulos
,
M. M.
,
2006
, “
Process Capability Requirement Under Maximum Material Condition
,”
Proc. Inst. Mech. Eng. B.
,
220
(
10
), pp.
1629
1634
.
10.
Tahan
,
A. S.
, and
Cauvier
,
J.
,
2012
, “
Capability Estimation of Geometrical Tolerance With a Material Modifier by a Hasofer–Lind Index
,”
ASME J. Manuf. Sci. Eng.
,
134
(
2
), p.
021007
.
11.
Capiez-Lernout
,
E.
,
Soize
,
C.
,
Lombard
,
J.-P.
,
Dupont
,
C.
, and
Seinturier
,
E.
,
2005
, “
Blade Manufacturing Tolerances Definition for a Mistuned Industrial Bladed Disk
,”
ASME J. Eng. Gas Turbines Power.
,
127
(
3
), pp.
621
628
.
12.
Clements
,
J. A.
,
1989
, “
Process Capability Calculations for Non-normal Distributions
,”
Qual. Prog.
,
22
, pp.
95
100
.
13.
Castagliola
,
P.
,
1996
, “
Evaluation of Non-Normal Process Capability Indices Using Burr’s Distributions
,”
Qual. Eng.
,
8
(
4
), pp.
587
593
.
14.
González
,
I.
, and
Sánchez
,
I.
,
2009
, “
Capability Indices and Nonconforming Proportion in Univariate and Multivariate Processes
,”
Int. J. Adv. Manuf. Technol.
,
44
(
9–10
), pp.
1036
1050
.
15.
Taam
,
W.
,
Subbaiah
,
P.
, and
Liddy
,
J. W.
,
1993
, “
A Note on Multivariate Capability Indices
,”
J. Appl. Stat.
,
20
(
3
), pp.
339
351
, Publisher: Taylor & Francis.
16.
Shahriari
,
H.
,
Hubele
,
N.
, and
Lawrence
,
F.
,
1995
, “
A Multivariate Process Capability Vector
,”
4th Industrial Engineering Research Conference
,
Nashville, TN
,
May 24–25
, pp.
304
309
.
17.
Wang
,
F. K.
, and
Chen
,
J. C.
,
1998
, “
Capability Index Using Principal Components Analysis
,”
Qual. Eng.
,
11
(
1
), pp.
21
27
.
18.
Shinde
,
R. L.
, and
Khadse
,
K. G.
,
2009
, “
Multivariate Process Capability Using Principal Component Analysis
,”
Qual. Reliab. Eng. Int.
,
25
(
1
), pp.
69
77
.
19.
Tano
,
I.
, and
Vännman
,
K.
,
2013
, “
A Multivariate Process Capability Index Based on the First Principal Component
,”
Qual. Reliab. Eng. Int.
,
29
(
7
), pp.
987
1003
.
20.
Wierda
,
S. J.
,
1994
, “
Multivariate Statistical Process Control—Recent Results and Directions for Future Research
,”
Stat. Neerl.
,
48
(
2
), pp.
147
168
.
21.
Chen
,
H.
,
1994
, “
A Multivariate Process Capability Index Over a Rectangular Solid Tolerance Zone
,”
Stat. Sin.
,
4
(
2
), pp.
749
758
, Publisher: Institute of Statistical Science, Academia Sinica.
22.
Polansky
,
A. M.
,
2001
, “
A Smooth Nonparametric Approach to Multivariate Process Capability
,”
Technometrics
,
43
(
2
), pp.
199
211
.
23.
Scott
,
D. W.
,
2015
,
Multivariate Density Estimation: Theory, Practice, and Visualization
,
John Wiley & Sons
.
24.
Hobæk Haff
,
I.
,
Aas
,
K.
, and
Frigessi
,
A.
,
2010
, “
On the Simplified Pair-Copula Construction – Simply Useful or Too Simplistic?
,”
J. Multivar. Anal.
,
101
(
5
), pp.
1296
1310
.
25.
Sklar
,
A.
,
1959
,
Fonctions De Répartition à N Dimensions Et Leurs Marges
,
Publications de l’Institut Statistique de l’Université de Paris
,
Paris
, pp.
229
231
.
26.
Joe
,
H.
,
2014
,
Dependence Modeling With Copulas
,
CRC Press
.
27.
Dißmann
,
J.
,
Brechmann
,
E. C.
,
Czado
,
C.
, and
Kurowicka
,
D.
,
2013
, “
Selecting and Estimating Regular Vine Copulae and Application to Financial Returns
,”
Comput. Stat. Data Anal.
,
59
, pp.
52
69
.
28.
Hunter
,
D.
,
1976
, “
An Upper Bound for the Probability of a Union
,”
J. Appl. Probab.
,
13
(
3
), pp.
597
603
.
29.
Dohmen
,
K.
,
2002
, “
Bonferroni-Type Inequalities Via Chordal Graphs
,”
Comb. Probab. Comput.
,
11
(
4
), pp.
349
351
.
30.
Hobæk Haff
,
I.
,
Aas
,
K.
,
Frigessi
,
A.
, and
Lacal
,
V.
,
2016
, “
Structure Learning in Bayesian Networks Using Regular Vines
,”
Comput. Stat. Data Anal.
,
101
, pp.
186
208
.
31.
Geenens
,
G.
,
Charpentier
,
A.
, and
Paindaveine
,
D.
,
2017
, “
Probit Transformation for Nonparametric Kernel Estimation of the Copula Density
,”
Bernoulli
,
23
(
3
), pp.
1848
1873
.
32.
Yang
,
Q.
,
Hong
,
Y.
,
Zhang
,
N.
, and
Li
,
J.
,
2017
, “
A Copula-Based Trend-Renewal Process Model for Analysis of Repairable Systems With Multitype Failures
,”
IEEE Trans. Reliab.
,
66
(
3
), pp.
590
602
.
33.
Yan
,
J.
,
2007
, “
Enjoy the Joy of Copulas: With a Package Copula
,”
J. Stat. Softw.
,
21
(
4
), pp.
1
21
.
34.
Nagler
,
T.
, and
Vatter
,
T.
,
2023
, “rvinecopulib: High Performance Algorithms for Vine Copula Modeling,” https://CRAN.R-project.org/package=rvinecopulib, Accessed July 30, 2023
35.
Kurz
,
M. S.
, and
Spanhel
,
F.
,
2022
, “
Testing the Simplifying Assumption in High-Dimensional Vine Copulas
,”
Electron. J. Stat.
,
16
(
2
), pp.
5226
5276
.
36.
Genest
,
C.
,
Rémillard
,
B.
, and
Beaudoin
,
D.
,
2009
, “
Goodness-of-Fit Tests for Copulas: A Review and a Power Study
,”
Insur. Math. Econ.
,
44
(
2
), pp.
199
213
.
37.
Schepsmeier
,
U.
,
2015
, “
Efficient Information Based Goodness-of-Fit Tests for Vine Copula Models With Fixed Margins: A Comprehensive Review
,”
J. Multivar. Analy.
,
138
, pp.
34
52
.
38.
Patton
,
A. J.
,
2004
, “
On the Out-of-Sample Importance of Skewness and Asymmetric Dependence for Asset Allocation
,”
J. Financ. Econom.
,
2
(
1
), pp.
130
168
.
You do not currently have access to this content.