Abstract

Melt pool dynamics in metal additive manufacturing (AM) is critical to process stability, microstructure formation, and final properties of the printed materials. Physics-based simulation, including computational fluid dynamics (CFD), is the dominant approach to predict melt pool dynamics. However, the physics-based simulation approaches suffer from the inherent issue of very high computational cost. This paper provides a physics-informed machine learning method by integrating the conventional neural networks with the governing physical laws to predict the melt pool dynamics, such as temperature, velocity, and pressure, without using any training data on velocity and pressure. This approach avoids solving the nonlinear Navier–Stokes equation numerically, which significantly reduces the computational cost (if including the cost of velocity data generation). The difficult-to-determine parameters' values of the governing equations can also be inferred through data-driven discovery. In addition, the physics-informed neural network (PINN) architecture has been optimized for efficient model training. The data-efficient PINN model is attributed to the extra penalty by incorporating governing PDEs, initial conditions, and boundary conditions in the PINN model.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Panwisawas
,
C.
,
Qiu
,
C. L.
,
Sovani
,
Y.
,
Brooks
,
J. W.
,
Attallah
,
M. M.
, and
Basoalto
,
H. C.
,
2015
, “
On the Role of Thermal Fluid Dynamics Into the Evolution of Porosity During Selective Laser Melting
,”
Scr. Mater.
,
105
, pp.
14
17
.
2.
Baere
,
D. D.
,
Bayat
,
M.
,
Mohanty
,
S.
, and
Hattel
,
J.
,
2018
, “
Thermo-Fluid-Metallurgical Modelling of the Selective Laser Melting Process Chain
,”
Procedia CIRP
,
74
, pp.
87
91
.
3.
Gürtler
,
F. J.
,
Karg
,
M.
,
Leitz
,
K. H.
, and
Schmidt
,
M.
,
2013
, “
Simulation of Laser Beam Melting of Steel Powders Using the Three-Dimensional Volume of Fluid Method
,”
Phys. Procedia
,
41
, pp.
881
886
.
4.
Tseng
,
C.-C.
, and
Li
,
C.-J.
,
2019
, “
Numerical Investigation of Interfacial Dynamics for the Melt Pool of Ti-6Al-4 V Powders Under a Selective Laser
,”
Int. J. Heat Mass Transfer
,
134
, pp.
906
919
.
5.
Panwisawas
,
C.
,
Qiu
,
C.
,
Anderson
,
M. J.
,
Sovani
,
Y.
,
Turner
,
R. P.
,
Attallah
,
M. M.
, et al
,
2017
, “
Mesoscale Modelling of Selective Laser Melting: Thermal Fluid Dynamics and Microstructural Evolution
,”
Comput. Mater. Sci.
,
126
, pp.
479
490
.
6.
Li
,
C.-J.
,
Tsai
,
T.-W.
, and
Tseng
,
C.-C.
,
2016
, “
Numerical Simulation for Heat and Mass Transfer During Selective Laser Melting of Titanium Alloys Powder
,”
Phys. Procedia
,
83
, pp.
1444
1449
.
7.
Shen
,
H.
,
Rometsch
,
P.
,
Wu
,
X.
, and
Huang
,
A.
,
2020
, “
Influence of Gas Flow Speed on Laser Plume Attenuation and Powder Bed Particle Pickup in Laser Powder Bed Fusion
,”
JOM
,
72
(
3
), pp.
1039
1051
.
8.
Kamimuki
,
K.
,
Inoue
,
T.
,
Yasuda
,
K.
,
Muro
,
M.
,
Nakabayashi
,
T.
, and
Matsunawa
,
A.
,
2003
, “
Behaviour of Monitoring Signals During Detection of Welding Defects in YAG Laser Welding. Study of Monitoring Technology for YAG Laser Welding (Report 2)
,”
Weld. Int.
,
17
(
3
), pp.
203
210
.
9.
Fabbro
,
R.
,
Slimani
,
S.
,
Doudet
,
I.
,
Coste
,
F.
, and
Briand
,
F.
,
2006
, “
Experimental Study of the Dynamical Coupling Between the Induced Vapour Plume and the Melt Pool for Nd–Yag CW Laser Welding
,”
J. Phys. D: Appl. Phys.
,
39
(
2
), pp.
394
400
.
10.
Greses
,
J.
,
Hilton
,
P. A.
,
Barlow
,
C. Y.
, and
Steen
,
W. M.
,
2004
, “
Plume Attenuation Under High Power Nd: Yttritium–Aluminum–Garnet Laser Welding
,”
J. Laser Appl.
,
16
(
1
), pp.
9
15
.
11.
Zou
,
J.
,
Yang
,
W.
,
Wu
,
S.
,
He
,
Y.
, and
Xiao
,
R.
,
2016
, “
Effect of Plume on Weld Penetration During High-Power Fiber Laser Welding
,”
J. Laser Appl.
,
28
(
2
), p.
022003
.
12.
Rabinovich
,
E.
, and
Kalman
,
H.
,
2008
, “
Generalized Master Curve for Threshold Superficial Velocities in Particle–Fluid Systems
,”
Powder Technol.
,
183
(
2
), pp.
304
313
.
13.
Anwar
,
A. B.
, and
Pham
,
Q.-C.
,
2017
, “
Selective Laser Melting of AlSi10Mg: Effects of Scan Direction, Part Placement and Inert Gas Flow Velocity on Tensile Strength
,”
J. Mater. Process. Technol.
,
240
, pp.
388
396
.
14.
Ferrar
,
B.
,
Mullen
,
L.
,
Jones
,
E.
,
Stamp
,
R.
, and
Sutcliffe
,
C. J.
,
2012
, “
Gas Flow Effects on Selective Laser Melting (SLM) Manufacturing Performance
,”
J. Mater. Process. Technol.
,
212
(
2
), pp.
355
364
.
15.
Alquaity
,
A. B. S.
, and
Yilbas
,
B. S.
,
2022
, “
Investigation of Spatter Trajectories in an SLM Build Chamber Under Argon Gas Flow
,”
Metals
,
12
(
2
), p.
343
.
16.
Wang
,
S.
,
Su
,
Z.
,
Ying
,
L.
,
Peng
,
X.
,
Zhu
,
S.
,
Liang
,
F.
, et al
,
2016
, “
Accelerating Magnetic Resonance Imaging via Deep Learning
,”
Proceedings of the 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI)
,
Prague, Czech Republic
,
Apr. 13–16
,
IEEE
, pp.
514
517
.
17.
Min
,
S.
,
Lee
,
B.
, and
Yoon
,
S.
,
2016
, “
Deep Learning in Bioinformatics
,”
Briefings Bioinf.
,
18
(
5
), pp.
851
869
.
18.
Young
,
T.
,
Hazarika
,
D.
,
Poria
,
S.
, and
Cambria
,
E.
,
2017
, “
Recent Trends in Deep Learning Based Natural Language Processing
,”
IEEE Comput. Intell. Mag.
,
13
, pp.
55
75
.
19.
Torfi
,
A.
,
Shirvani
,
R. A.
,
Keneshloo
,
Y.
,
Tavaf
,
N.
, and
Fox
,
E. A.
,
2020
, “
Natural Language Processing Advancements by Deep Learning: A Survey
,”
ArXiv
. https://arxiv.org/abs/2003.01200
20.
Voulodimos
,
A.
,
Doulamis
,
N.
,
Doulamis
,
A.
, and
Protopapadakis
,
E.
,
2018
, “
Deep Learning for Computer Vision: A Brief Review
,”
Comput. Intell. Neurosci.
,
2018
, p.
7068349
.
21.
Esteva
,
A.
,
Chou
,
K.
,
Yeung
,
S.
,
Naik
,
N.
,
Madani
,
A.
,
Mottaghi
,
A.
, et al
,
2021
, “
Deep Learning-Enabled Medical Computer Vision
,”
NPJ Digital Med.
,
4
(
1
), p.
5
.
22.
Brunton
,
S. L.
,
Noack
,
B. R.
, and
Koumoutsakos
,
P.
,
2020
, “
Machine Learning for Fluid Mechanics
,”
Annu. Rev. Fluid Mech.
,
52
(
1
), pp.
477
508
.
23.
Brunton
,
S. L.
,
2021
, “
Applying Machine Learning to Study Fluid Mechanics
,”
Acta Mech. Sin.
,
37
(
12
), pp.
1718
1726
.
24.
Wan
,
Z. Y.
,
Vlachas
,
P.
,
Koumoutsakos
,
P.
, and
Sapsis
,
T.
,
2018
, “
Data-Assisted Reduced-Order Modeling of Extreme Events in Complex Dynamical Systems
,”
PLoS One
,
13
(
5
), p.
e0197704
.
25.
Fukami
,
K.
,
Fukagata
,
K.
, and
Taira
,
K.
,
2020
, “
Assessment of Supervised Machine Learning Methods for Fluid Flows
,”
Theor. Comput. Fluid Dyn.
,
34
(
4
), pp.
497
519
.
26.
Chen
,
L.
,
Yao
,
X.
,
Tan
,
C.
,
He
,
W.
,
Su
,
J.
,
Weng
,
F.
, et al
,
2023
, “
In-Situ Crack and Keyhole Pore Detection in Laser Directed Energy Deposition Through Acoustic Signal and Deep Learning
,”
Addit. Manuf.
,
69
, p.
103547
.
27.
Estalaki
,
S. M.
,
Lough
,
C. S.
,
Landers
,
R. G.
,
Kinzel
,
E. C.
, and
Luo
,
T.
,
2022
, “
Predicting Defects in Laser Powder Bed Fusion Using In-Situ Thermal Imaging Data and Machine Learning
,”
Addit. Manuf.
,
58
, p.
103008
.
28.
Suzuki
,
A.
,
Shiba
,
Y.
,
Ibe
,
H.
,
Takata
,
N.
, and
Kobashi
,
M.
,
2022
, “
Machine-Learning Assisted Optimization of Process Parameters for Controlling the Microstructure in a Laser Powder bed Fused WC/Co Cemented Carbide
,”
Addit. Manuf.
,
59
, p.
103089
.
29.
Ogoke
,
F.
, and
Farimani
,
A. B.
,
2021
, “
Thermal Control of Laser Powder Bed Fusion Using Deep Reinforcement Learning
,”
Addit. Manuf.
,
46
, p.
102033
.
30.
Petrich
,
J.
,
Snow
,
Z.
,
Corbin
,
D.
, and
Reutzel
,
E. W.
,
2021
, “
Multi-Modal Sensor Fusion With Machine Learning for Data-Driven Process Monitoring for Additive Manufacturing
,”
Addit. Manuf.
,
48
, p.
102364
.
31.
Westphal
,
E.
, and
Seitz
,
H.
,
2021
, “
A Machine Learning Method for Defect Detection and Visualization in Selective Laser Sintering Based on Convolutional Neural Networks
,”
Addit. Manuf.
,
41
, p.
101965
.
32.
Liu
,
S.
,
Stebner
,
A. P.
,
Kappes
,
B. B.
, and
Zhang
,
X.
,
2021
, “
Machine Learning for Knowledge Transfer Across Multiple Metals Additive Manufacturing Printers
,”
Addit. Manuf.
,
39
, p.
101877
.
33.
McGregor
,
D. J.
,
Bimrose
,
M. V.
,
Shao
,
C.
,
Tawfick
,
S.
, and
King
,
W. P.
,
2022
, “
Using Machine Learning to Predict Dimensions and Qualify Diverse Part Designs Across Multiple Additive Machines and Materials
,”
Addit. Manuf.
,
55
, p.
102848
.
34.
Ogoke
,
O. F.
,
Johnson
,
K.
,
Glinsky
,
M.
,
Laursen
,
C.
,
Kramer
,
S.
, and
Barati Farimani
,
A.
,
2022
, “
Deep-Learned Generators of Porosity Distributions Produced During Metal Additive Manufacturing
,”
Addit. Manuf.
,
60
, p.
103250
.
35.
Guo
,
S.
,
Agarwal
,
M.
,
Cooper
,
C.
,
Tian
,
Q.
,
Gao
,
R. X.
,
Guo
,
W.
, et al
,
2022
, “
Machine Learning for Metal Additive Manufacturing: Towards a Physics-Informed Data-Driven Paradigm
,”
J. Manuf. Syst.
,
62
, pp.
145
163
.
36.
Sharma
,
R.
, and
Guo
,
Y. B.
, “
Computational Modeling and Physics-Informed Machine Learning of Metal Additive Manufacturing: State-of-the-Art and Future Perspective
,”
Annu. Rev. Heat Transfer
,
24
(
1
), pp.
303
337
.
37.
Raissi
,
M.
,
2018
, “
Deep Hidden Physics Models: Deep Learning of Nonlinear Partial Differential Equations
,”
J. Mach. Learn. Res.
,
19
, pp.
1
24
.
38.
Haghighat
,
E.
,
Raissi
,
M.
,
Moure
,
A.
,
Gomez
,
H.
, and
Juanes
,
R.
,
2021
, “
A Physics-Informed Deep Learning Framework for Inversion and Surrogate Modeling in Solid Mechanics
,”
Comput. Meth. Appl. Mech. Eng.
,
379
, p.
113741
.
39.
Moseley
,
B.
,
Markham
,
A.
, and
Nissen-Meyer
,
T.
,
2023
, “
Finite Basis Physics-Informed Neural Networks (FBPINNs): A Scalable Domain Decomposition Approach for Solving Differential Equations
,”
Adv. Comput. Math.
, pp.
49
62
.
40.
Gao
,
H.
,
Sun
,
L.
, and
Wang
,
J.-X.
,
2021
, “
PhyGeoNet: Physics-Informed Geometry-Adaptive Convolutional Neural Networks for Solving Parameterized Steady-State PDEs on Irregular Domain
,”
J. Comput. Phys.
,
428
, p.
110079
.
41.
Fang
,
Z.
,
2022
, “
A High-Efficient Hybrid Physics-Informed Neural Networks Based on Convolutional Neural Network
,”
IEEE Trans. Neural Netw. Learn. Syst.
,
33
(
10
), pp.
5514
5526
.
42.
Zhang
,
R.
,
Liu
,
Y.
, and
Sun
,
H.
,
2020
, “
Physics-Informed Multi-LSTM Networks for Metamodeling of Nonlinear Structures
,”
Comput. Meth. Appl. Mech. Eng.
,
369
, p.
113226
.
43.
Yucesan
,
Y. A.
, and
Viana
,
F. A. C.
,
2021
, “
Hybrid Physics-Informed Neural Networks for Main Bearing Fatigue Prognosis with Visual Grease Inspection
,”
Comput. Ind.
,
125
, p.
103386
.
44.
Yang
,
L.
,
Meng
,
X.
, and
Karniadakis
,
G. E.
,
2021
, “
B-PINNs: Bayesian Physics-Informed Neural Networks for Forward and Inverse PDE Problems with Noisy Data
,”
J. Comput. Phys.
,
425
, p.
109913
.
45.
Jin
,
X.
,
Cai
,
S.
,
Li
,
H.
, and
Karniadakis
,
G. E.
,
2021
, “
NSFnets (Navier-Stokes Flow Nets): Physics-Informed Neural Networks for the Incompressible Navier-Stokes Equations
,”
J. Comput. Phys.
,
426
, p.
109951
.
46.
Arthurs
,
C. J.
, and
King
,
A. P.
,
2021
, “
Active Training of Physics-Informed Neural Networks to Aggregate and Interpolate Parametric Solutions to the Navier-Stokes Equations
,”
J. Comput. Phys.
,
438
, p.
110364
.
47.
Cuomo
,
S.
,
Di Cola
,
V. S.
,
Giampaolo
,
F.
,
Rozza
,
G.
,
Raissi
,
M.
, and
Piccialli
,
F.
,
2022
, “
Scientific Machine Learning Through Physics-Informed Neural Networks: Where We Are and What’s Next
.” arXiv pre-print server.
48.
Liao
,
S.
,
Xue
,
T.
,
Jeong
,
J.
,
Webster
,
S.
,
Ehmann
,
K.
, and
Cao
,
J.
,
2023
, “
Hybrid Thermal Modeling of Additive Manufacturing Processes Using Physics-Informed Neural Networks for Temperature Prediction and Parameter Identification
,”
Comput. Mech.
,
72
(
3
), pp.
499
512
.
49.
Zobeiry
,
N.
, and
Humfeld
,
K. D.
,
2021
, “
A Physics-Informed Machine Learning Approach for Solving Heat Transfer Equation in Advanced Manufacturing and Engineering Applications
,”
Eng. Appl. Artif. Intell.
,
101
, p.
104232
.
50.
Li
,
S.
,
Wang
,
G.
,
Di
,
Y.
,
Wang
,
L.
,
Wang
,
H.
, and
Zhou
,
Q.
,
2023
, “
A Physics-Informed Neural Network Framework to Predict 3D Temperature Field Without Labeled Data in Process of Laser Metal Deposition
,”
Eng. Appl. Artif. Intell.
,
120
, p.
105908
.
51.
Zhu
,
Q.
,
Liu
,
Z.
, and
Yan
,
J.
,
2021
, “
Machine Learning for Metal Additive Manufacturing: Predicting Temperature and Melt Pool Fluid Dynamics Using Physics-Informed Neural Networks
,”
Comput. Mech.
,
67
(
2
), pp.
619
635
.
52.
Cao
,
X.
,
Duan
,
C.
,
Luo
,
X.
,
Zheng
,
S.
,
Hao
,
X.
,
Shang
,
D.
, et al
,
2024
, “
Physics-informed Machine Learning Approach for Molten Pool Morphology Prediction and Process Evaluation in Directed Energy Deposition of 12CrNi2 Alloy Steel
,”
J. Manuf. Processes
,
119
, pp.
806
826
.
53.
Aggarwal
,
A.
,
Patel
,
S.
, and
Kumar
,
A.
,
2019
, “
Selective Laser Melting of 316L Stainless Steel: Physics of Melting Mode Transition and Its Influence on Microstructural and Mechanical Behavior
,”
JOM
,
71
(
3
), pp.
1105
1116
.
54.
Tang
,
C.
,
Le
,
K. Q.
, and
Wong
,
C. H.
,
2020
, “
Physics of Humping Formation in Laser Powder Bed Fusion
,”
Int. J. Heat Mass Transfer
,
149
, p.
119172
.
55.
Raissi
,
M.
,
Yazdani
,
A.
, and
Karniadakis
,
G. E.
,
2020
, “
Hidden Fluid Mechanics: Learning Velocity and Pressure Fields From Flow Visualizations
,”
Science
,
367
(
6481
), pp.
1026
1030
.
56.
Raissi
,
M.
,
Perdikaris
,
P.
, and
Karniadakis
,
G. E.
,
2019
, “
Physics-Informed Neural Networks: A Deep Learning Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial Differential Equations
,”
J. Comput. Phys.
,
378
, pp.
686
707
.
You do not currently have access to this content.