Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

To enhance the corrosion resistance of aluminum alloy exposed to marine environment, a novel Peano fractal micro-nano texture was introduced. The Peano micro-nano textures with three depths were prepared by laser etching technology, and the textured surfaces were modified using an ethanol solution of 1H, 1H, 2H, 2H-perfluorodecyltriethoxysilane (PFDS). The hydrophobic properties of aluminum alloy surfaces with Peano textures were measured. The wetting mechanism was analyzed via X-ray photoelectron spectroscopy (XPS) characterization, and the electrochemical experiments were performed to explore the corrosion resistance of a superhydrophobic surface. The results showed that LS-d30 (laser processed specimen with depth of 30 μm) exhibited the optimal superhydrophobicity, with a water contact angle of 169.3 deg and a sliding angle of 3.9 deg. The Peano micro-nano texture facilitated the adsorption of PFDS, resulting in the creation of CF2–CF2 and CF3–CF3 functional groups on the surface. These functional groups contributed to the enhancement of hydrophobic properties. The LS-d30 surface exhibited a superior corrosion inhibition rate of 84.16%. Additionally, electrochemical impedance spectroscopy (EIS) revealed a significant increase in the corrosion resistance of the Peano fractal micro-nano texture surface.

References

1.
Li
,
H.
,
Yu
,
S. R.
, and
Han
,
X. X.
,
2016
, “
Fabrication of CuO Hierarchical Flower-Like Structures With Biomimetic Superamphiphobic, Self-cleaning and Corrosion Resistance Properties
,”
Chem. Eng. J.
,
283
, pp.
1443
1454
.
2.
Sarbada
,
S.
, and
Shin
,
Y. C.
,
2017
, “
Superhydrophobic Contoured Surfaces Created on Metal and Polymer Using a Femtosecond Laser
,”
Appl. Surf. Sci.
,
405
, pp.
465
475
.
3.
Mao
,
Y.
,
Zhu
,
Y.
,
Deng
,
C.-M.
,
Sun
,
S.
, and
Xia
,
D.-H.
,
2022
, “
Analysis of Localized Corrosion Mechanism of 2024 Aluminum Alloy at a Simulated Marine Splash Zone
,”
Eng. Fail. Anal.
,
142
, p.
106759
.
4.
Barthlott
,
W.
, and
Neinhuis
,
C.
,
1997
, “
Purity of the Sacred Lotus, or Escape From Contamination in Biological Surfaces
,”
Planta
,
202
(
1
), pp.
1
8
.
5.
Gao
,
X. F.
, and
Jiang
,
L.
,
2004
, “
Water-Repellent Legs of Water Striders
,”
Nature
,
432
(
7013
), pp.
36
36
.
6.
Han
,
Z.
,
Fu
,
J.
,
Wang
,
Z.
,
Wang
,
Y. G.
,
Li
,
B.
,
Mu
,
Z. Z.
,
Zhang
,
J. Q.
, and
Niu
,
S. C.
,
2017
, “
Long-Term Durability of Superhydrophobic Properties of Butterfly Wing Scales After Continuous Contact With Water
,”
Colloids Surf. A
,
518
, pp.
139
144
.
7.
Wang
,
D.
,
Sun
,
Q.
,
Hokkanen
,
M. J.
,
Zhang
,
C.
,
Lin
,
F.-Y.
,
Liu
,
Q.
,
Zhu
,
S.-P.
, et al
,
2020
, “
Design of Robust Superhydrophobic Surfaces
,”
Nature
,
582
(
7810
), pp.
55
59
.
8.
Frontier
,
S.
,
1987
, “Applications of Fractal Theory to Ecology,”
Developments in Numerical Ecology
,
P.
Legendre
, and
L.
Legendre
, eds.,
Springer
,
Berlin
, pp.
335
378
.
9.
Su
,
B.
,
Tian
,
Y.
, and
Jiang
,
L.
,
2016
, “
Bioinspired Interfaces With Superwettability: From Materials to Chemistry
,”
J. Am. Chem. Soc.
,
138
(
6
), pp.
1727
1748
.
10.
Jin
,
Y.
,
Wu
,
Y.
,
Li
,
H.
,
Zhao
,
M.
, and
Pan
,
J.
,
2017
, “
Definition of Fractal Topography to Essential Understanding of Scale-Invariance
,”
Sci. Rep
,
7
(
1
), p.
46672
.
11.
Tuteja
,
A.
,
Choi
,
W.
,
Ma
,
M.
,
Mabry
,
J. M.
,
Mazzella
,
S. A.
,
Rutledge
,
G. C.
,
McKinley
,
G. H.
, and
Cohen
,
R. E.
,
2008
, “
Designing Superoleophobic Surfaces
,”
Science
,
318
(
5856
), pp.
1618
1622
.
12.
Li
,
J.
,
Wu
,
R. N.
,
Jing
,
Z. J.
,
Yan
,
L.
,
Zha
,
F.
, and
Lei
,
Z. Q.
,
2015
, “
One-Step Spray-Coating Process for the Fabrication of Colorful Superhydrophobic Coatings With Excellent Corrosion Resistance
,”
Langmuir
,
31
(
39
), pp.
10702
10707
.
13.
Wang
,
N.
,
Wang
,
Q.
,
Xu
,
S. S.
, and
Zheng
,
X.
,
2019
, “
Eco-Friendly and Safe Method of Fabricating Superhydrophobic Surfaces on Stainless Steel Substrates
,”
J. Phys. Chem. C
,
123
(
42
), pp.
25738
25746
.
14.
Jain
,
R.
, and
Pitchumani
,
R.
,
2018
, “
Facile Fabrication of Durable Copper-Based Superhydrophobic Surfaces Via Electrodeposition
,”
Langmuir
,
34
(
10
), pp.
3159
3169
.
15.
Wang
,
P. W.
,
Zhao
,
T. Y.
,
Bian
,
R. X.
,
Wang
,
G. Y.
, and
Liu
,
H.
,
2017
, “
Robust Superhydrophobic Carbon Nanotube Film With Lotus Leaf Mimetic Multiscale Hierarchical Structures
,”
ACS Nano
,
11
(
12
), pp.
12385
12391
.
16.
Scarratt
,
L. R. J.
,
Hoatson
,
B. S.
,
Wood
,
E. S.
,
Hawkett
,
B. S.
, and
Neto
,
C.
,
2016
, “
Durable Superhydrophobic Surfaces Via Spontaneous Wrinkling of Teflon AF
,”
ACS Appl. Mater. Interfaces
,
8
(
10
), pp.
6743
6750
.
17.
Vorobyev
,
A. Y.
, and
Guo
,
C.
,
2015
, “
Multifunctional Surfaces Produced by Femtosecond Laser Pulses
,”
J. Appl. Phys.
,
117
(
3
), p.
033103
.
18.
Wang
,
Y. H.
,
Zhang
,
Z. B.
,
Xu
,
J. K.
, and
Yu
,
H. D.
,
2021
, “
One-Step Method Using Laser for Large-Scale Preparation of Bionic Superhydrophobic & Drag-Reducing Fish-Scale Surface
,”
Surf. Coat. Technol.
,
409
, p.
126801
.
19.
Cardoso
,
J. T.
,
Aguilar-Morales
,
A. I.
,
Alamri
,
S.
,
Huerta-Murillo
,
D.
,
Cordovilla
,
F.
,
Lasagni
,
A. F.
, and
Ocaña
,
J. L.
,
2018
, “
Superhydrophobicity on Hierarchical Periodic Surface Structures Fabricated Via Direct Laser Writing and Direct Laser Interference Patterning on an Aluminium Alloy
,”
Opt. Laser Eng.
,
111
, pp.
193
200
.
20.
De Lara
,
L. R.
,
Jagdheesh
,
R.
, and
Ocaña
,
J. L.
,
2016
, “
Corrosion Resistance of Laser Patterned Ultrahydrophobic Aluminium Surface
,”
Mater. Lett.
,
184
, pp.
100
103
.
21.
Song
,
X. G.
,
Liang
,
Z. H.
,
Wang
,
H. J.
,
Hu
,
S. P.
,
Fu
,
W.
,
Xu
,
X. R.
, and
Tan
,
C. W.
,
2023
, “
Fabrication of Functional Surfaces of Aluminum Alloy With a Transition From Superhydrophilic to Superhydrophobic by Nanosecond Laser Irradiation
,”
J. Coat. Technol. Res.
,
20
(
6
), pp.
1897
1912
.
22.
Yang
,
X.
,
Yang
,
C. J.
,
Yang
,
Z.
, and
Zhang
,
D. W.
,
2024
, “
Corrosion Resistance and Stability of Superhydrophobic Surfaces with Hierarchical Micro/Nanostructures Induced by Nanosecond and Femtosecond Lasers
,”
Opt. Laser Technol.
,
169
, p.
110179
.
23.
Rajan
,
R. A.
,
Konda
,
R. S.
,
Saraj
,
C. S.
,
Lai
,
Y. H.
,
Verma
,
G.
,
Yu
,
Z.
,
Yu
,
W. L.
,
Yan
,
D. D.
, and
Yang
,
J. J.
,
2022
, “
Long-Term Seawater Anti-corrosion Properties of Al Alloy Triggered by Femtosecond Laser Structuring With Phase Change
,”
Appl. Surf. Sci.
,
573
, p.
151612
.
24.
Peano
,
G.
,
1890
, “
Sur une Courbe, qui Remplit Toute une Aire Plane
,”
Math. Ann.
,
36
(
1
), pp.
157
160
.
25.
Wang
,
C.
,
Ding
,
K.
,
Song
,
Y.
,
Jia
,
X.
,
Lin
,
N.
, and
Duan
,
J. A.
,
2024
, “
Femtosecond Laser Patterned Superhydrophobic Surface With Anisotropic Sliding for Droplet Manipulation
,”
Opt. Laser Technol.
,
168
, p.
109829
.
26.
Jalil
,
S. A.
,
Akram
,
M.
,
Bhat
,
J. A.
,
Hayes
,
J. J.
,
Singh
,
S. C.
,
ElKabbash
,
M.
, and
Guo
,
C.
,
2020
, “
Creating Superhydrophobic and Antibacterial Surfaces on Gold by Femtosecond Laser Pulses
,”
Appl. Surf. Sci.
,
506
, p.
144952
.
27.
Milles
,
S.
,
Soldera
,
M.
,
Kuntze
,
T.
, and
Lasagni
,
A. F.
,
2020
, “
Characterization of Self-cleaning Properties on Superhydrophobic Aluminum Surfaces Fabricated by Direct Laser Writing and Direct Laser Interference Patterning
,”
Appl. Surf. Sci.
,
525
, p.
146518
.
28.
Long
,
J. Y.
,
Fan
,
P. X.
,
Gong
,
D. W.
,
Jiang
,
D. F.
,
Zhang
,
H. J.
,
Li
,
L.
, and
Zhong
,
M. L.
,
2015
, “
Superhydrophobic Surfaces Fabricated by Femtosecond Laser With Tunable Water Adhesion: From Lotus Leaf to Rose Petal
,”
ACS Appl. Mater. Interfaces
,
7
(
18
), pp.
9858
9865
.
29.
Yang
,
Z.
,
Liu
,
X. P.
, and
Tian
,
Y. L.
,
2019
, “
Insights Into the Wettability Transition of Nanosecond Laser Ablated Surface Under Ambient Air Exposure
,”
J. Colloid Interface Sci.
,
533
, pp.
268
277
.
30.
Cassie
,
A. B. D.
, and
Baxter
,
S.
,
1944
, “
Wettability of Porous Surfaces
,”
Trans. Faraday Soc.
,
40
, pp.
546
551
.
31.
Li
,
X. Y.
,
Jiang
,
Y.
,
Jiang
,
Z. H.
,
Li
,
Y. C.
,
Wen
,
C. E.
,
Zhang
,
D. M.
,
Lian
,
J. S.
, and
Zhang
,
Z. H.
,
2021
, “
Improvement of Corrosion Resistance of H59 Brass Through Fabricating Superhydrophobic Surface Using Laser Ablation and Heating Treatment
,”
Corros. Sci.
,
180
, p.
109186
.
32.
Chang
,
F. M.
,
Cheng
,
S. L.
,
Hong
,
S. J.
,
Sheng
,
Y. J.
, and
Tsao
,
H. K.
,
2010
, “
Superhydrophilicity to Superhydrophobicity Transition of CuO Nanowire Films
,”
Appl. Phys. Lett.
,
96
(
11
), p.
114101
.
33.
Chen
,
T. C.
,
Liu
,
H. T.
,
Yang
,
H. F.
,
Yan
,
W.
,
Zhu
,
W.
, and
Liu
,
H.
,
2016
, “
Biomimetic Fabrication of Robust Self-assembly Superhydrophobic Surfaces With Corrosion Resistance Properties on Stainless Steel Substrate
,”
RSC Adv.
,
6
(
50
), pp.
43937
43949
.
34.
Stern
,
M.
, and
Geary
,
A. L.
,
1957
, “
Electrochemical Polarization: I. A Theoretical Analysis of the Shape of Polarization Curves
,”
J. Electrochem. Soc.
,
104
(
1
), pp.
56
63
.
35.
Liu
,
W.
,
Xu
,
Q. J.
,
Han
,
J.
,
Chen
,
X. H.
, and
Min
,
Y. L.
,
2016
, “
A Novel Combination Approach for the Preparation of Superhydrophobic Surface on Copper and the Consequent Corrosion Resistance
,”
Corros. Sci.
,
110
, pp.
105
113
.
36.
Ishizaki
,
T.
, and
Sakamoto
,
M.
,
2011
, “
Facile Formation of Biomimetic Color-Tuned Superhydrophobic Magnesium Alloy With Corrosion Resistance
,”
Langmuir
,
27
(
6
), pp.
2375
2381
.
37.
Ma
,
Q.
,
Tong
,
Z.
,
Wang
,
W.
, and
Dong
,
G. N.
,
2018
, “
Fabricating Robust and Repairable Superhydrophobic Surface on Carbon Steel by Nanosecond Laser Texturing for Corrosion Protection
,”
Appl. Surf. Sci.
,
455
, pp.
748
757
.
38.
Li
,
X. W.
,
Zhang
,
Q. X.
,
Guo
,
Z.
,
Yu
,
J. G.
,
Tang
,
M. K.
, and
Huang
,
X. J.
,
2015
, “
Low-Cost and Large-Scale Fabrication of a Superhydrophobic 5052 Aluminum Alloy Surface With Enhanced Corrosion Resistance
,”
RSC Adv.
,
5
(
38
), pp.
29639
29646
.
39.
Tong
,
W.
,
Karthik
,
N.
,
Li
,
J. L.
,
Wang
,
N.
, and
Xiong
,
D. S.
,
2019
, “
Superhydrophobic Surface With Stepwise Multilayered Micro- and Nanostructure and an Investigation of Its Corrosion Resistance
,”
Langmuir
,
35
(
47
), pp.
15078
15085
.
You do not currently have access to this content.