Graphical Abstract Figure

In this work, we seek to resolve the issue of thermal variation in metal additive manufacturing. We do this by formulating and optimal control problem and dynamical models to generate process plans that minimize thermal variance. We then experimentally validate these plans on an electron beam powder bed fusion (EB-PBF) system and demonstrate an improvement in consistency for optimized plans

Graphical Abstract Figure

In this work, we seek to resolve the issue of thermal variation in metal additive manufacturing. We do this by formulating and optimal control problem and dynamical models to generate process plans that minimize thermal variance. We then experimentally validate these plans on an electron beam powder bed fusion (EB-PBF) system and demonstrate an improvement in consistency for optimized plans

Close modal

Abstract

The large temporal and spatial variations in temperature that can occur in layer-wise metal additive manufacturing (AM) lead to thermal excursions, resulting in property variations and defects. These variations cannot always be fully mitigated by simple static parameter search. To address this challenge, we propose a general approach based on modeling AM processes on the part-scale in state-space and framing AM process planning as a numerical optimal control problem. We demonstrate this approach on the problem of minimizing thermal variation in a given layer in the electron beam powder bed fusion AM process, and are able to compute globally optimal dynamic process plans. These optimized process plans are then evaluated in simulation, achieving an 87% and 86% reduction in cumulative variance compared to random spot melting and a uniform power field respectively, and are further validated in experiment. This one-shot feedforward planning approach expands the capabilities of AM technology by minimizing the need for iterative experiments and simulations to achieve process optimization. Further, this work opens the possibility for the application of optimal control theory to part-scale optimization and control in AM.

References

1.
Xu
,
Y.
,
Mishra
,
B.
, and
Narra
,
S. P.
,
2022
, “
Experimental Investigation of In-Situ Microstructural Transformations in Wire Arc Additively Manufactured Maraging 250-Grade Steel
,”
Mater. Charact.
,
190
, p.
112065
.
2.
Foster
,
B. K.
,
Beese
,
A. M.
,
Keist
,
J. S.
,
McHale
,
E. T.
, and
Palmer
,
T. A.
,
2017
, “
Impact of Interlayer Dwell Time on Microstructure and Mechanical Properties of Nickel and Titanium Alloys
,”
Metall. Mater. Trans. A
,
48
(
9
), pp.
4411
4422
.
3.
DebRoy
,
T.
,
Wei
,
H. L.
,
Zuback
,
J. S.
,
Mukherjee
,
T.
,
Elmer
,
J. W.
,
Milewski
,
J. O.
,
Beese
,
A. M.
,
Wilson-Heid
,
A.
,
De
,
A.
, and
Zhang
,
W.
,
2018
, “
Additive Manufacturing of Metallic Components – Process, Structure and Properties
,”
Prog. Mater. Sci.
,
92
, pp.
112
224
.
4.
Schwalbach
,
E. J.
,
Benzing
,
J. T.
,
Sinha
,
V.
,
Butler
,
T. M.
,
Pilchak
,
A. L.
,
Chaput
,
K. J.
,
Schehl
,
N. D.
,
John
,
R.
, and
Hrabe
,
N.
,
2022
, “
Effects of Local Processing Parameters on Microstructure, Texture, and Mechanical Properties of Electron Beam Powder Bed Fusion Manufactured Ti–6Al–4V
,”
Mater. Sci. Eng. A
,
855
, p.
143853
.
5.
Beuth
,
J.
,
Fox
,
J.
,
Gockel
,
J.
,
Montgomery
,
C.
,
Yang
,
R.
,
Qiao
,
H.
, and
Soylemez
,
E.
,
2013
, “
Process Mapping for Qualification Across Multiple Direct Metal Additive Manufacturing Processes
,”
Proceedings of the 2013 International Solid Freeform Fabrication Symposium
, University of Texas at Austin, pp.
655
665
.
6.
Beuth
,
J. L.
, “
Process Mapping of Melt Pool Geometry
,” (U.S. Patent 9933255B2, Apr. 2018).
7.
Zhang
,
B.
,
Seede
,
R.
,
Xue
,
L.
,
Atli
,
K. C.
,
Zhang
,
C.
,
Whitt
,
A.
,
Karaman
,
I.
,
Arroyave
,
R.
, and
Elwany
,
A.
,
2021
, “
An Efficient Framework for Printability Assessment in Laser Powder Bed Fusion Metal Additive Manufacturing
,”
Addit. Manuf.
,
46
, p.
102018
.
8.
Narra
,
S. P.
,
Cunningham
,
R.
,
Beuth
,
J.
, and
Rollett
,
A. D.
,
2018
, “
Location Specific Solidification Microstructure Control in Electron Beam Melting of Ti-6Al-4V
,”
Addit. Manuf.
,
19
, pp.
160
166
.
9.
Templeton
,
W. F.
,
Hinnebusch
,
S.
,
Strayer
,
S. T.
,
To
,
A. C.
,
Pistorius
,
P. C.
, and
Narra
,
S. P.
,
2024
, “
A Mechanistic Explanation of Shrinkage Porosity in Laser Powder Bed Fusion Additive Manufacturing
,”
Acta Mater.
,
266
, p.
119632
.
10.
freemelt. 2024. https://freemelt.com/.
11.
Dehoff
,
R. R.
,
Kirka
,
M. M.
,
Sames
,
W. J.
,
Bilheux
,
H.
,
Tremsin
,
A. S.
,
Lowe
,
L. E.
, and
Babu
,
S. S.
,
2015
, “
Site Specific Control of Crystallographic Grain Orientation Through Electron Beam Additive Manufacturing
,”
Mater. Sci. Technol.
,
31
(
8
), pp.
931
938
.
12.
Seurat Technologies | Metal Additive Manufacturing. 2024, https://www.seurat.com/.
13.
VulcanForms | Digital Manufacturing at Industrial Scale. 2024, https://www.vulcanforms.com/.
14.
Gibson
,
B. T.
,
Bandari
,
Y. K.
,
Richardson
,
B. S.
,
Henry
,
W. C.
,
Vetland
,
E. J.
,
Sundermann
,
T. W.
, and
Love
,
L. J.
,
2020
, “
Melt Pool Size Control Through Multiple Closed-Loop Modalities in Laser-Wire Directed Energy Deposition of Ti-6Al-4V
,”
Addit. Manuf.
,
32
, p.
100993
.
15.
Li
,
F
,
Chen
,
S
,
Wu
,
Z
, and
Yan
,
Z.
,
2018
, “
Adaptive Process Control of Wire and Arc Additive Manufacturing for Fabricating Complex-Shaped Components
,”
Int. J. Adv. Manuf. Technol.
,
96
, pp.
871
879
.
16.
Li
,
Y.
,
Li
,
X.
,
Zhang
,
G.
,
Horváth
,
I.
, and
Han
,
Q.
,
2021
, “
Interlayer Closed-Loop Control of Forming Geometries for Wire and Arc Additive Manufacturing Based on Fuzzy-Logic Inference
,”
J. Manuf. Process.
,
63
, pp.
35
47
.
17.
Tang
,
S.
,
Wang
,
G.
,
Song
,
H.
,
Li
,
R.
, and
Zhang
,
H.
,
2021
, “
A Novel Method of Bead Modeling and Control for Wire and Arc Additive Manufacturing
,”
Rapid Prototyp. J.
,
27
, pp.
311
320
.
18.
Wang
,
Y.
,
Lu
,
J.
,
Zhao
,
Z.
,
Deng
,
W.
,
Han
,
J.
,
Bai
,
L.
,
Yang
,
X.
, and
Yao
,
J.
,
2021
, “
Active Disturbance Rejection Control of Layer Width in Wire Arc Additive Manufacturing Based on Deep Learning
,”
J. Manuf. Process.
,
67
, pp.
364
375
.
19.
Xia
,
C.
,
Pan
,
Z.
,
Zhang
,
S.
,
Li
,
H.
,
Xu
,
Y.
, and
Chen
,
S.
,
2020
, “
Model-Free Adaptive Iterative Learning Control of Melt Pool Width in Wire Arc Additive Manufacturing
,”
Int. J. Adv. Manuf. Technol.
,
110
, pp.
2131
2142
.
20.
Craeghs
,
T.
,
Bechmann
,
F.
,
Berumen
,
S.
, and
Kruth
,
J. -P.
,
2010
, “
Feedback Control of Layerwise Laser Melting Using Optical Sensors
,”
Phys. Proc.
,
5
(
B
), pp.
505
514
.
21.
Shkoruta
,
A.
,
Mishra
,
S.
, and
Rock
,
S. J.
,
2021
, “
Real-Time Image-Based Feedback Control of Laser Powder Bed Fusion
,”
ASME Lett. Dyn. Syst. Control
,
2
(
2
), p.
021001
.
22.
Wang
,
R.
,
Standfield
,
B.
,
Dou
,
C.
,
Law
,
A. C.
, and
Kong
,
Z. J.
,
2023
, “
Real-Time Process Monitoring and Closed-Loop Control on Laser Power Via a Customized Laser Powder Bed Fusion Platform
,”
Addit. Manuf.
,
66
, p.
103449
.
23.
Balta
,
E. C.
,
Tilbury
,
D. M.
, and
Barton
,
K.
,
2024
, “
Iterative Learning Spatial Height Control for Layerwise Processes
,”
Automatica
,
167
, p.
111756
.
24.
Wang
,
Q.
,
Michaleris
,
P.
,
Nassar
,
A. R.
,
Irwin
,
J. E.
,
Ren
,
Y.
, and
Stutzman
,
C. B.
,
2020
, “
Model-Based Feedforward Control of Laser Powder Bed Fusion Additive Manufacturing
,”
Addit. Manuf.
,
31
, p.
100985
.
25.
Druzgalski
,
C. L.
,
Ashby
,
A.
,
Guss
,
G.
,
King
,
W. E.
,
Roehling
,
T. T.
, and
Matthews
,
M. J.
,
2020
, “
Process Optimization of Complex Geometries Using Feed Forward Control for Laser Powder Bed Fusion Additive Manufacturing
,”
Addit. Manuf.
,
34
, p.
101169
.
26.
Forslund
,
R.
,
Snis
,
A.
, and
Larsson
,
S.
,
2021
, “
A Greedy Algorithm for Optimal Heating in Powder-Bed-Based Additive Manufacturing
,”
J. Math. Ind.
,
11
(
1
), p.
14
.
27.
Xiong
,
J.
,
Chen
,
H.
,
Zheng
,
S.
, and
Zhang
,
G.
,
2022
, “
Feedback Control of Variable Width in Gas Metal Arc-Based Additive Manufacturing
,”
J. Manuf. Process.
,
76
, pp.
11
20
.
28.
Shi
,
Y.
,
Gong
,
S.
,
Xu
,
H.
,
Yang
,
G.
,
Qiao
,
J.
,
Wang
,
Z.
,
Zhang
,
J.
, and
Qi
,
B.
,
2023
, “
Electron Beam Metal Additive Manufacturing: Defects Formation and In-Process Control
,”
J. Manuf. Process.
,
101
, pp.
386
431
.
29.
Olleak
,
A.
,
Adcock
,
E.
,
Hinnebusch
,
S.
,
Dugast
,
F.
,
Rollett
,
A. D.
, and
To
,
A. C.
,
2024
, “
Understanding the Role of Geometry and Interlayer Cooling Time on Microstructure Variations in LPBF Ti6Al4V Through Part-Scale Scan-Resolved Thermal Modeling
,”
Addit. Manuf. Lett.
,
9
, p.
100197
.
30.
Ramani
,
K. S.
,
He
,
C.
,
Tsai
,
Y. -L.
, and
Okwudire
,
C. E.
,
2022
, “
SmartScan: An Intelligent Scanning Approach for Uniform Thermal Distribution, Reduced Residual Stresses and Deformations in PBF Additive Manufacturing
,”
Addit. Manuf.
,
52
, p.
102643
.
31.
Schmidt
,
J.
, and
Fügenschuh
,
A.
,
2023
, “
Trajectory Optimization for Arbitrary Layered Geometries in Wire-Arc Additive Manufacturing
,”
Optim. Eng.
,
25
(
1
), pp.
529
553
.
32.
Karp
,
R. M.
,
1972
,
Reducibility among Combinatorial Problems
,
Springer US
,
New York City
, pp.
85
103
.
33.
Mozaffar
,
M.
,
Liao
,
S.
,
Jeong
,
J.
,
Xue
,
T.
, and
Cao
,
J.
,
2023
, “
Differentiable Simulation for Material Thermal Response Design in Additive Manufacturing Processes
,”
Addit. Manuf.
,
61
, p.
103337
.
34.
Promoppatum
,
P.
,
Yao
,
S. -C.
,
Pistorius
,
P. C.
, and
Rollett
,
A. D.
,
2017
, “
A Comprehensive Comparison of the Analytical and Numerical Prediction of the Thermal History and Solidification Microstructure of Inconel 718 Products Made by Laser Powder-Bed Fusion
,”
Engineering
,
3
(
5
), pp.
685
694
.
35.
Paul
,
R.
,
Anand
,
S.
, and
Gerner
,
F.
,
2014
, “
Effect of Thermal Deformation on Part Errors in Metal Powder Based Additive Manufacturing Processes
,”
ASME J. Manuf. Sci. Eng.
,
136
(
3
), p.
031009
.
36.
Wood
,
N.
, and
Hoelzle
,
D. J.
,
2023
, “
On the Controllability and Observability of Temperature States in Metal Powder Bed Fusion
,”
ASME J. Dyn. Syst. Meas. Control
,
145
(
3
), p.
031002
.
37.
Wood
,
N.
, and
Hoelzle
,
D. J.
,
2019
, “
'Seeing’ the Temperature Inside the Part During the Powder Bed Fusion Process
,”
Proceedings of the 30th Annual International Solid Freeform Fabrication Symposium
, University of Texas at Austin, pp.
172
191
.
38.
Wood
,
N.
,
Schwalbach
,
E.
,
Gillman
,
A.
, and
Hoelzle
,
D. J.
,
2021
, “
The Ensemble Kalman Filter as a Tool for Estimating Temperatures in the Powder Bed Fusion Process
,”
2021 American Control Conference (ACC)
,
New Orleans, LA
, pp.
4369
4375
.
39.
Strayer
,
S. T.
,
Templeton
,
W. J. F.
,
Dugast
,
F. X.
,
Narra
,
S. P.
, and
To
,
A. C.
,
2022
, “
Accelerating High-Fidelity Thermal Process Simulation of Laser Powder Bed Fusion Via the Computational Fluid Dynamics Imposed Finite Element Method (CIFEM)
,”
Addit. Manuf. Lett.
,
3
, p.
100081
.
40.
Narra
,
S. P.
,
Scime
,
L.
, and
Beuth
,
J.
,
2018
, “
Integrated Control of Melt Pool Geometry and Microstructure in Laser Powder Bed Fusion of AlSi10Mg
,”
Metall. Mater. Trans. A
,
49
(
10
), pp.
5097
5106
.
41.
Biegler
,
L. T.
,
2007
, “
An Overview of Simultaneous Strategies for Dynamic Optimization
,”
Chem. Eng. Process.: Process Intensif.
,
46
(
11
), pp.
1043
1053
. Special Issue on Process Optimization and Control in Chemical Engineering and Processing.
42.
Wächter
,
A.
, and
Biegler
,
L. T.
,
2006
, “
On the Implementation of an Interior-Point Filter Line-Search Algorithm for Large-Scale Nonlinear Programming
,”
Math. Programm.
,
106
(
1
), pp.
25
57
.
43.
Hogg
,
J. D.
, and
Scott
,
J. A.
,
2011
, “
HSL_MA97 : A Bit-Compatible Multifrontal Code for Sparse Symmetric Systems
,”
Rutherford Appleton Laboratory Technical Reports
. https://api.semanticscholar.org/CorpusID:57155956
44.
Gowda
,
S.
,
Ma
,
Y.
,
Cheli
,
A.
,
Gwóźzdź
,
M.
,
Shah
,
V. B.
,
Edelman
,
A.
, and
Rackauckas
,
C.
,
2022
, “
High-Performance Symbolic-Numerics Via Multiple Dispatch
,”
ACM Commun. Comput. Algebra
,
55
(
3
), pp.
92
96
.
45.
Revels
,
J.
,
Lubin
,
M.
, and
Papamarkou
,
T.
,
2016
, “Forward-Mode Automatic Differentiation in Julia.” arXiv:1607.07892 [cs.MS].
46.
JuliaDiff. SparseDiffTools.jl. github.com/JuliaDiff/SparseDiffTools.jl. 2024.
47.
Mills
,
K. C.
,
2002
,
Recommended Values of Thermophysical Properties for Selected Commercial Alloys
,
Woodhead Publishing
,
Sawston, UK
, pp.
135
142
.
48.
Potra
,
F. A.
, and
Wright
,
S. J.
,
2000
, “
Interior-Point Methods
,”
J. Comput. Appl. Math.
,
124
(
1
), pp.
281
302
. Numerical Analysis 2000. Vol. IV: Optimization and Nonlinear Equations.
49.
Gunasegaram
,
D. R.
,
Barnard
,
A. S.
,
Matthews
,
M. J.
,
Jared
,
B. H.
,
Andreaco
,
A. M.
,
Bartsch
,
K.
, and
Murphy
,
A. B.
,
2024
, “
Machine Learning-Assisted In-Situ Adaptive Strategies for the Control of Defects and Anomalies in Metal Additive Manufacturing
,”
Addit. Manuf.
,
81
, p.
104013
.
50.
Neunert
,
M.
,
Stäuble
,
M.
,
Giftthaler
,
M.
,
Bellicoso
,
C. D.
,
Carius
,
J.
,
Gehring
,
C.
,
Hutter
,
M.
, and
Buchli
,
J.
,
2018
, “
Whole-Body Nonlinear Model Predictive Control Through Contacts for Quadrupeds
,”
IEEE Rob. Autom. Lett.
,
3
(
3
), pp.
1458
1465
.
51.
Açikmese
,
B.
,
Carson
,
J. M.
, and
Blackmore
,
L.
,
2013
, “
Lossless Convexification of Nonconvex Control Bound and Pointing Constraints of the Soft Landing Optimal Control Problem
,”
IEEE Trans. Control Syst. Technol.
,
21
(
6
), pp.
2104
2113
.
52.
Hargraves
,
C.
, and
Paris
,
S.
,
1987
, “
Direct Trajectory Optimization Using Nonlinear Programming and Collocation
,”
AIAA J. Guid.
,
10
(
4
), pp.
338
342
.
53.
Howell
,
T. A.
,
Jackson
,
B. E.
, and
Manchester
,
Z.
,
2019
, “
ALTRO: A Fast Solver for Constrained Trajectory Optimization
,”
2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Macau, China
,
Nov. 4–8
, pp.
7674
7679
.
You do not currently have access to this content.