Abstract

A novel abrasive tool, based on the principle of liquid body armor, was developed in a previous study. However, a material removal rate (MRR) model for the high-shear and low-pressure grinding of brittle materials using this tool has yet to be established. Through the analysis of the contact mechanism, two critical transition depths and three distinct stages were identified. The acting force on an active abrasive grain and its corresponding depth of cut were also determined. The influence of various grinding parameters on the maximum undeformed chip thickness (MUCT) was analyzed. Subsequently, an MRR prediction model was developed, incorporating the stress distribution at the contact interface. The effectiveness of this model was validated through high-shear and low-pressure grinding experiments. The predicted MRR values under different grinding parameters, such as normal force, grinding speed, and workpiece feed rate, showed a strong correlation with experimental results, with average prediction errors of 12.65%, 10.30%, and 8.70%, respectively.

References

1.
Zong
,
W.
,
Sun
,
T.
,
Li
,
D.
,
Cheng
,
K.
, and
Liang
,
Y.
,
2008
, “
XPS Analysis of the Groove Wearing Marks on Flank Face of Diamond Tool in Nanometric Cutting of Silicon Wafer
,”
Int. J. Mach. Tools Manuf.
,
48
(
15
), pp.
1678
1687
.
2.
Zhou
,
P.
,
Yan
,
Y.
,
Huang
,
N.
,
Wang
,
Z.
,
Kang
,
R.
, and
Guo
,
D.
,
2017
, “
Residual Stress Distribution in Silicon Wafers Machined by Rotational Grinding
,”
ASME J. Manuf. Sci. Eng.
,
139
(
8
), p.
081012
.
3.
Li
,
P.
,
Guo
,
X.
,
Yuan
,
S.
,
Li
,
M.
,
Kang
,
R.
, and
Guo
,
D.
,
2021
, “
Effects of Grinding Speeds on the Subsurface Damage of Single Crystal Silicon Based on Molecular Dynamics Simulations
,”
Appl. Surf. Sci.
,
554
, p.
149668
.
4.
Wu
,
C.
,
Li
,
B.
,
Liu
,
Y.
, and
Liang
,
S. Y.
,
2017
, “
Surface Roughness Modeling for Grinding of Silicon Carbide Ceramics Considering Co-existence of Brittleness and Ductility
,”
Int. J. Mech. Sci.
,
133
, pp.
167
177
.
5.
Pei
,
Z. J.
,
Fisher
,
G. R.
, and
Liu
,
J.
,
2008
, “
Grinding of Silicon Wafers: A Review From Historical Perspectives
,”
Int. J. Mach. Tools Manuf.
,
48
(
12–13
), pp.
1297
1307
.
6.
Yin
,
J.
,
Bai
,
Q.
,
Haitjema
,
H.
, and
Zhang
,
B.
,
2022
, “
Depolarization of Surface Scattering in Polarized Laser Scattering Detection for Machined Silicon Wafers
,”
Precis. Eng.
,
73
, pp.
203
213
.
7.
Li
,
M.
,
Guo
,
X.
,
Dai
,
S.
,
Yuan
,
S.
,
Ma
,
J.
,
Liu
,
F.
,
Zhang
,
L.
,
Guo
,
D.
, and
Zhou
,
P.
,
2022
, “
Effect of Grinding Damage on Cutting Force and Ductile Machining During Single Grain Scratching of Monocrystalline Silicon
,”
Mater. Sci. Semicond. Process
,
151
, p.
107019
.
8.
Yin
,
J.
,
Bai
,
Q.
, and
Zhang
,
B.
,
2019
, “
Subsurface Damage Detection on Ground Silicon Wafers Using Polarized Laser Scattering
,”
ASME J. Manuf. Sci. Eng.
,
141
(
10
), p.
101012
.
9.
Malkin
,
S.
, and
Hwang
,
T. W.
,
1996
, “
Grinding Mechanisms for Ceramics
,”
CIRP Ann.
,
45
(
2
), pp.
569
580
.
10.
Zhu
,
D.
,
Yan
,
S.
, and
Li
,
B.
,
2014
, “
Single-Grit Modeling and Simulation of Crack Initiation and Propagation in SiC Grinding Using Maximum Undeformed Chip Thickness
,”
Comput. Mater. Sci.
,
92
, pp.
13
31
.
11.
Wang
,
W.
,
Yao
,
P.
,
Wang
,
J.
,
Huang
,
C.
,
Zhu
,
H.
,
Zou
,
B.
,
Liu
,
H.
, and
Yan
,
J.
,
2016
, “
Crack-Free Ductile Mode Grinding of Fused Silica Under Controllable Dry Grinding Conditions
,”
Int. J. Mach. Tools Manuf.
,
109
, pp.
126
136
.
12.
Bifano
,
T. G.
,
Dow
,
T. A.
, and
Scattergood
,
R. O.
,
1991
, “
Ductile-Regime Grinding: A New Technology for Machining Brittle Materials
,”
ASME J. Eng. Ind.
,
113
(
2
), pp.
184
189
.
13.
Zhang
,
T.
,
Jiang
,
F.
,
Huang
,
H.
,
Lu
,
J.
,
Wu
,
Y.
,
Jiang
,
Z.
, and
Xu
,
X.
,
2021
, “
Towards Understanding the Brittle–Ductile Transition in the Extreme Manufacturing
,”
Int. J. Extreme Manuf.
,
3
(
2
), p.
022001
.
14.
Argon
,
A. S.
,
2001
, “
Mechanics and Physics of Brittle to Ductile Transitions in Fracture
,”
ASME J. Eng. Mater. Technol.
,
123
(
1
), pp.
1
11
.
15.
Han
,
Z.
,
Liu
,
B.
,
Fang
,
Q.
,
Liaw
,
P. K.
, and
Li
,
J.
,
2024
, “
A Dislocation Theory-Based Model for Brittle-to-Ductile Transition in Multi-principal Element Alloys
,”
Int. J. Plast.
,
180
, p.
104059
.
16.
Huang
,
H.
,
Li
,
X.
,
Mu
,
D.
, and
Lawn
,
B. R.
,
2021
, “
Science and Art of Ductile Grinding of Brittle Solids
,”
Int. J. Mach. Tools Manuf.
,
161
, p.
103675
.
17.
Li
,
X.
,
Fan
,
Z.
,
Huang
,
S.
,
Lu
,
M.
, and
Huang
,
H.
,
2023
, “
Brittle-to-Ductile Transition in Nanoscratching of Silicon and Gallium Arsenide Using Berkovich and Conical Tips
,”
Appl. Surf. Sci.
,
637
, p.
157934
.
18.
Tao
,
H.
,
Zeng
,
Q.
,
Liu
,
Y.
,
Zhao
,
D.
, and
Lu
,
X.
,
2023
, “
Influence of Anisotropy on Material Removal and Deformation Mechanism Based on Nanoscratch Tests of Monocrystal Silicon
,”
Tribol. Int.
,
187
, p.
108736
.
19.
Oh
,
Y.
,
Ko
,
W. S.
,
Kwak
,
N.
,
Jang
,
J.
,
Ohmura
,
T.
, and
Han
,
H. N.
,
2022
, “
Small-Scale Analysis of Brittle-to-Ductile Transition Behavior in Pure Tungsten
,”
J. Mater. Sci. Technol.
,
105
, pp.
242
258
.
20.
Zhang
,
J.
,
Fu
,
Y.
,
Chen
,
X.
,
Shen
,
Z.
,
Zhang
,
J.
,
Xiao
,
J.
, and
Xu
,
J.
,
2023
, “
Investigation of the Material Removal Process in In-Situ Laser-Assisted Diamond Cutting of Reaction-Bonded Silicon Carbide
,”
J. Eur. Ceram. Soc.
,
43
(
6
), pp.
2354
2365
.
21.
Blake
,
P. N.
, and
Scattergood
,
R. O.
,
1990
, “
Ductile-Regime Machining of Germanium and Silicon
,”
J. Am. Ceram. Soc.
,
73
(
4
), pp.
949
957
.
22.
Wang
,
S.
,
Sun
,
G.
,
Zhao
,
Q.
, and
Yang
,
X.
,
2023
, “
Monitoring of Ductile–Brittle Transition Mechanisms in Sapphire Ultra-Precision Grinding Used Small Grit Size Grinding Wheel Through Force and Acoustic Emission Signals
,”
Measurement
,
210
, p.
112557
.
23.
Tanaka
,
H.
,
Shimada
,
S.
, and
Anthony
,
L.
,
2007
, “
Requirements for Ductile-Mode Machining Based on Deformation Analysis of Mono-crystalline Silicon by Molecular Dynamics Simulation
,”
CIRP Ann.
,
56
(
1
), pp.
53
56
.
24.
Xiao
,
G.
,
To
,
S.
, and
Zhang
,
G.
,
2015
, “
Molecular Dynamics Modelling of Brittle–Ductile Cutting Mode Transition: Case Study on Silicon Carbide
,”
Int. J. Mach. Tools Manuf.
,
88
, pp.
214
222
.
25.
Ren
,
C.
,
Fang
,
Z.
,
Koopman
,
M.
,
Butler
,
B.
,
Paramore
,
J.
, and
Middlemas
,
S.
,
2018
, “
Methods for Improving Ductility of Tungsten—A Review
,”
Int. J. Refract. Met. Hard Mater.
,
75
, pp.
170
183
.
26.
Liu
,
C.
,
Chen
,
X.
,
Ke
,
J.
,
She
,
Z.
,
Zhang
,
J.
,
Xiao
,
J.
, and
Xu
,
J.
,
2021
, “
Numerical Investigation on Subsurface Damage in Nanometric Cutting of Single-Crystal Silicon at Elevated Temperatures
,”
J. Manuf. Process.
,
68
, pp.
1060
1071
.
27.
Ma
,
Z.
,
Wang
,
Z.
,
Wang
,
X.
, and
Yu
,
T.
,
2020
, “
Effects of Laser-Assisted Grinding on Surface Integrity of Zirconia Ceramic
,”
Ceram. Int.
,
46
(
1
), pp.
921
929
.
28.
Tian
,
Y.
,
Zhang
,
G.
,
Liu
,
B.
,
Ahmad
,
S.
,
Liu
,
S.
, and
Zhao
,
S.
,
2024
, “
Study on High-Shear and Low-Pressure Grinding Using a New BAAT With Soft-Hard Combined Substrate for Single-Crystal Silicon
,”
Int. J. Adv. Manuf. Technol.
,
131
(
1
), pp.
467
482
.
29.
Liu
,
B.
,
2024
, “
Study on Machining Mechanism of High Shear/Pressure Ratio Grinding With Body-Armor-Like Wheel
,”
Dissertation for the Doctoral Degree
,
Shandong University of Technology
,
Zibo
(in Chinese).
30.
Chen
,
J.
, and
Peng
,
Y.
,
2023
, “
Super Hard and Brittle Material Removal Mechanism in Fixed Abrasive Lapping: Theory and Modeling
,”
Tribol. Int.
,
184
, p.
108493
.
31.
Wu
,
P.
,
Liu
,
N.
,
Li
,
X.
, and
Zhu
,
Y.
,
2024
, “
Material Removal Rate Model for Chemical–Mechanical Polishing of Single-Crystal SiC Substrates Using Agglomerated Diamond Abrasive
,”
Precis. Eng.
,
88
, pp.
572
583
.
32.
Liu
,
B.
,
Tian
,
Y.
,
Han
,
J.
,
Li
,
L.
,
Gu
,
Z.
, and
Hu
,
X.
,
2022
, “
Development of a New High-Shear and Low-Pressure Grinding Wheel and Its Grinding Characteristics for Inconel718 Alloy
,”
Chin. J. Aeronaut.
,
35
(
12
), pp.
278
286
.
33.
Tian
,
Y.
,
Li
,
L.
,
Fan
,
S.
,
Guo
,
Q.
, and
Cheng
,
X.
,
2021
, “
A Novel High-Shear and Low-Pressure Grinding Method Using Specially Developed Abrasive Tools
,”
Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf.
,
235
(
1–2
), pp.
166
172
.
34.
Yan
,
W.
, and
Fischer
,
F. D.
,
2000
, “
Applicability of the Hertz Contact Theory to Rail-Wheel Contact Problems
,”
Arch. Appl. Mech.
,
70
(
4
), pp.
255
268
.
35.
Yang
,
Z.
,
Chu
,
Y.
,
Xu
,
X.
,
Huang
,
H.
,
Zhu
,
D.
,
Yan
,
S.
, and
Ding
,
H.
,
2021
, “
Prediction and Analysis of Material Removal Characteristics for Robotic Belt Grinding Based on Single Spherical Abrasive Grain Model
,”
Int. J. Mech. Sci.
,
190
, p.
106005
.
36.
Vander Voort
,
G. F.
,
1999
,
Metallography, Principles and Practice
,
ASM International
,
Materials Park, OH
.
37.
Doman
,
D. A.
,
Warkentin
,
A.
, and
Bauer
,
R.
,
2006
, “
A Survey of Recent Grinding Wheel Topography Models
,”
Int. J. Mach. Tools Manuf.
,
46
(
3–4
), pp.
343
352
.
38.
Bhushan
,
B.
,
2013
,
Principles and Applications of Tribology
,
John Wiley & Sons
,
Hoboken, NJ
.
39.
Lee
,
S. H.
,
2012
, “
Analysis of Ductile Mode and Brittle Transition of AFM Nanomachining of Silicon
,”
Int. J. Mach. Tools Manuf.
,
61
, pp.
71
79
.
40.
Huang
,
H.
,
Lawn
,
B. R.
,
Cook
,
R. F.
, and
Marshall
,
D. B.
,
2020
, “
Critique of Materials-Based Models of Ductile Machining in Brittle Solids
,”
J. Am. Ceram. Soc.
,
103
(
11
), pp.
6096
6100
.
41.
Zhu
,
W.-L.
, and
Anthony
,
B.
,
2020
, “
Investigation of Critical Material Removal Transitions in Compliant Machining of Brittle Ceramics
,”
Mater. Des.
,
185
, p.
108258
.
42.
Yang
,
M.
,
Li
,
C.
,
Zhang
,
Y.
,
Jia
,
D.
,
Zhang
,
X.
,
Hou
,
Y.
,
Li
,
R.
, and
Wang
,
J.
,
2017
, “
Maximum Undeformed Equivalent Chip Thickness for Ductile-Brittle Transition of Zirconia Ceramics Under Different Lubrication Conditions
,”
Int. J. Mach. Tools Manuf.
,
122
, pp.
55
65
.
43.
Zheng
,
Z.
,
Huang
,
K.
,
Lin
,
C.
,
Zhang
,
J.
,
Wang
,
K.
,
Sun
,
P.
, and
Xu
,
J.
,
2022
, “
An Analytical Force and Energy Model for Ductile-Brittle Transition in Ultra-Precision Grinding of Brittle Materials
,”
Int. J. Mech. Sci.
,
220
, p.
107107
.
You do not currently have access to this content.