Abstract

Laser energy density plays a crucial role in determining the forming quality, microstructure, and mechanical properties of components fabricated by laser powder bed fusion (LPBF). Hexagonal boron nitride (h-BN) reinforced Hastelloy X (HX) composites of 0.2 wt% have been proven to eliminate cracks by regulating the laser absorption behavior and the temperature field, thereby reducing the temperature gradient and carbide segregation. This approach synergistically enhanced both the strength and elongation of HX formed via LPBF. However, the lack of process optimization studies for this system has hindered its broader industrial application. This study investigated the effects of varying laser energy densities on 0.2 wt% h-BN/HX composites and identified the optimal laser processing parameter. Experimental results showed that an optimal laser energy density of 41.67 J/mm3 resulted in the best microstructure, characterized by fine grains (10.97 µm), high densification (99.81%), and low surface roughness (Sa = 4.68 µm). The mechanical properties, including ultimate tensile strength (1259.18 MPa) and elongation (18.26%), were also maximized at this energy density. Additionally, the optimal energy density improved microstructural uniformity, dislocation density (kernel average misorientation (KAM) = 0.64), and texture strength (Taylor factor = 3.18). This study provides valuable insights into the influence of laser energy density on thermal behavior, forming quality, and mechanical performance of LPBF-manufactured 0.2 wt% h-BN/HX, offering guidance for optimizing LPBF processing parameters and enhancing the performance of nickel-based composites in advanced engineering applications.

References

1.
Esmaeilizadeh
,
R.
,
Keshavarzkermani
,
A.
,
Faghih
,
S.
,
Behravesh
,
B.
,
Ali
,
U.
,
Bonakdar
,
A.
,
Jahed
,
H.
, and
Toyserkani
,
E.
,
2022
, “
Fatigue Characterization and Modeling of Additively Manufactured Hastelloy-X Superalloy
,”
J. Mater. Eng. Perform.
,
31
(
8
), pp.
6234
6245
.
2.
Bai
,
J.
,
Ma
,
R.
,
Zhang
,
Y. L.
,
Cheng
,
L.
,
Wang
,
Y. J.
, and
Zhou
,
W. T.
,
2023
, “
Effect of Laser Power and Heat Treatment on Microstructures and Tensile Properties of LPBF Fabricated Hastelloy X Superalloy
,”
Mater. Res. Express
,
10
(
10
), p.
106515
.
3.
Cheng
,
X. P.
,
Guo
,
Q. Y.
,
Liu
,
C. X.
, and
Ma
,
Z. Q.
,
2025
, “
Simultaneous Enhancement of Elevated Temperature Strength and Ductility in Additive-Manufactured Nickel-Based Superalloy Via Doping Y2O3 Nanoparticles
,”
J. Mater. Sci. Technol.
,
210
, pp.
312
324
.
4.
He
,
L.
,
Dong
,
A.
,
Du
,
D.
,
Gao
,
Y.
,
Huo
,
X.
,
Xiong
,
L.
,
Zhang
,
X.
,
Lu
,
Y.
, and
Sun
,
B.
,
2023
, “
The Anisotropic Oxidation Behavior of Hastelloy X Alloy Fabricated by Laser Powder-Bed Fusion (LPBF) During the Cyclic Oxidation Process
,”
Corros. Sci.
,
217
, p.
111156
.
5.
He
,
X.
,
Kong
,
D. C.
,
Zhou
,
Y. Q.
,
Wang
,
L.
,
Ni
,
X. Q.
,
Zhang
,
L.
,
Wu
,
W. H.
,
Li
,
R. X.
,
Li
,
X. G.
, and
Dong
,
C. F.
,
2022
, “
Powder Recycling Effects on Porosity Development and Mechanical Properties of Hastelloy X Alloy During Laser Powder Bed Fusion Process
,”
Addit. Manuf.
,
55
, p.
102840
.
6.
Jiang
,
D.
,
Tian
,
Y.
,
Zhu
,
Y.
,
Huang
,
S.
, and
Huang
,
A.
,
2023
, “
On the Microstructure and Tensile Property of Core-Shell Structured Nickel-Based Superalloy Part Produced by Laser Powder Bed Fusion and Hot Isostatic Pressing
,”
Mater. Sci. Eng.: A
,
870
, p.
144833
.
7.
Han
,
Q.
,
Gu
,
Y.
,
Wang
,
L.
,
Feng
,
Q.
,
Gu
,
H.
,
Johnston
,
R.
, and
Setchi
,
R.
,
2020
, “
Effects of TiC Content on Microstructure and Mechanical Properties of Nickel-Based Hastelloy X Nanocomposites Manufactured by Selective Laser Melting
,”
Mater. Sci. Eng.: A
,
796
, p.
140008
.
8.
Huang
,
Z.
,
Zhai
,
Z.
,
Lin
,
W.
,
Chang
,
H.
,
Wu
,
Y.
,
Yang
,
R.
, and
Zhang
,
Z.
,
2022
, “
On the Orientation Dependent Microstructure and Mechanical Behavior of Hastelloy X Superalloy Fabricated by Laser Powder Bed Fusion
,”
Mater. Sci. Eng.: A
,
844
, p.
143208
.
9.
Sun
,
J.
,
Guo
,
M.
,
Shi
,
K.
, and
Gu
,
D.
,
2022
, “
Influence of Powder Morphology on Laser Absorption Behavior and Printability of Nanoparticle-Coated 90W-Ni-Fe Powder During Laser Powder Bed Fusion
,”
Mater. Sci. Addit. Manuf.
,
2
(
1
), p.
11
.
10.
Lin
,
K.
,
Qiao
,
J.
,
Shi
,
K.
,
Dong
,
W.
, and
Gu
,
D.
,
2023
, “
Laser Powder Bed Fusion of Micro-channels for the Application of Proton Exchange Membrane Fuel Cell Bipolar Plates
,”
CIRP J. Manuf. Sci. Technol.
,
43
, pp.
193
204
.
11.
Huang
,
G. J.
,
Gu
,
D. D.
,
Dai
,
D. H.
,
Yuan
,
L. H.
,
Wang
,
R.
, and
Xiong
,
K.
,
2023
, “
Microstructure Evolution and Underlying Thermal Behavior of High-Content TiC Reinforced Titanium Matrix Composites Fabricated by Laser Directed Energy Deposition
,”
J. Mater. Res. Technol.
,
23
, pp.
2238
7854
.
12.
Yang
,
S.
,
Han
,
Q.
,
Yin
,
Y.
,
Gao
,
J.
,
Zhang
,
Z.
,
Gu
,
Y.
, and
Low
,
K. W. Q.
,
2021
, “
Effects of Micrometer-Sized TiB2 on Crack Mitigation, Mechanical and Electrochemical Performance of a Ni-Based Alloy Fabricated by Selective Laser Melting
,”
Opt. Laser Technol.
,
142
, p.
107240
.
13.
Hu
,
J.
,
Hu
,
Y.
,
Lan
,
C.
,
Zhang
,
Q.
,
Jin
,
F.
,
Li
,
W.
,
Lin
,
X.
, and
Huang
,
W.
,
2022
, “
Cracking Mechanism and Control of Hastelloy X Prepared by Laser Powder Bed Fusion
,”
J. Mater. Res. Technol.
,
21
, pp.
3526
3547
.
14.
Jang
,
J.-E.
,
Kim
,
W.
,
Sung
,
J.-H.
,
Kim
,
Y.-J.
,
Park
,
S.-H.
, and
Kim
,
D.-H.
,
2022
, “
Microstructural Control Strategy Based on Optimizing Laser Powder Bed Fusion for Different Hastelloy X Powder Size
,”
Materials
,
15
(
18
), p.
6191
.
15.
He
,
X.
,
Yang
,
B.
,
Kong
,
D.
,
Dai
,
K.
,
Ni
,
X.
,
Chen
,
Z.
, and
Dong
,
C.
,
2024
, “
An Integrated Multiscale Simulation Guiding the Processing Optimisation for Additively Manufactured Nickel-Based Superalloys
,”
Virtual Phys. Prototy.
,
19
(
1
), p.
e2313661
.
16.
Zhang
,
X.
,
Xu
,
H.
,
Li
,
Z.
,
Dong
,
A.
,
Du
,
D.
,
Lei
,
L.
,
Zhang
,
G.
,
Wang
,
D.
,
Zhu
,
G.
, and
Sun
,
B.
,
2021
, “
Effect of the Scanning Strategy on Microstructure and Mechanical Anisotropy of Hastelloy X Superalloy Produced by Laser Powder Bed Fusion
,”
Mater. Charact.
,
173
, p.
110951
.
17.
Prasad
,
K.
,
Obana
,
M.
,
Ishii
,
Y.
,
Ito
,
A.
, and
Torizuka
,
S.
,
2021
, “
The Effect of Laser Scanning Strategies on the Microstructure, Texture and Crystallography of Grains Exhibiting Hot Cracks in Additively Manufactured Hastelloy X
,”
Mech. Mater.
,
157
, p.
103816
.
18.
Yin
,
Y.
,
Zhang
,
J.
,
Gao
,
J.
,
Zhang
,
Z.
,
Han
,
Q.
, and
Zan
,
Z.
,
2021
, “
Laser Powder Bed Fusion of Ni-Based Hastelloy X Superalloy: Microstructure, Anisotropic Mechanical Properties and Strengthening Mechanisms
,”
Mater. Sci. Eng.: A
,
827
, p.
142076
.
19.
Kitano
,
H.
,
Kusano
,
M.
,
Tsujii
,
M.
,
Yumoto
,
A.
, and
Watanabe
,
M.
,
2021
, “
Process Parameter Optimization Framework for the Selective Laser Melting of Hastelloy X Alloy Considering Defects and Solidification Crack Occurrence
,”
Crystals
,
11
(
6
), p.
578
.
20.
Hibino
,
S.
,
Todo
,
T.
,
Ishimoto
,
T.
,
Gokcekaya
,
O.
,
Koizumi
,
Y.
,
Igashira
,
K.
, and
Nakano
,
T.
,
2021
, “
Control of Crystallographic Texture and Mechanical Properties of Hastelloy-X Via Laser Powder Bed Fusion
,”
Crystals
,
11
(
9
), p.
1064
.
21.
Sun
,
J.
,
Gu
,
D.
,
Huang
,
G.
,
Lin
,
K.
,
Shi
,
K.
,
Yuan
,
L.
,
Sun
,
J.
, and
Zhang
,
H.
,
2024
, “
Additive Manufacturing Hastelloy X With Enhanced Properties by Optimizing Strategies
,”
Int. J. Mech. Sci.
,
278
, p.
109491
.
22.
Sun
,
J.
,
Gu
,
D.
,
Huang
,
G.
,
Shi
,
K.
,
Wang
,
R.
,
Wang
,
R.
,
Zhang
,
Y.
, and
Wang
,
L.
,
2024
, “
Effects of Hexagonal Boron Nitride Content on Forming Quality and Performance of Laser Powder Bed Fusion Manufactured Nickel-Based Hastelloy X Composites
,”
Compos. Part B: Eng.
,
272
, p.
111218
.
23.
Guo
,
M.
,
Gu
,
D.
,
Xi
,
L.
,
Du
,
L.
,
Zhang
,
H.
, and
Zhang
,
J.
,
2019
, “
Formation of Scanning Tracks During Selective Laser Melting (SLM) of Pure Tungsten Powder: Morphology, Geometric Features and Forming Mechanisms
,”
Int. J. Refract. Met. Hard Mater.
,
79
, pp.
37
46
.
24.
Han
,
Q. Q.
,
Gu
,
Y. C.
,
Gu
,
H.
,
Yin
,
Y. Y.
,
Song
,
J.
,
Zhang
,
Z. H.
, and
Soe
,
S.
,
2021
, “
Laser Powder Bed Fusion of WC-Reinforced Hastelloy-X Composite: Microstructure and Mechanical Properties
,”
J. Mater. Sci.
,
56
(
2
), pp.
1768
1782
.
25.
Guo
,
M.
,
Gu
,
D.
,
Xi
,
L.
,
Zhang
,
H.
,
Zhang
,
J.
,
Yang
,
J.
, and
Wang
,
R.
,
2019
, “
Selective Laser Melting Additive Manufacturing of Pure Tungsten: Role of Volumetric Energy Density on Densification, Microstructure and Mechanical Properties
,”
Int. J. Refract. Met. Hard Mater.
,
84
, p.
105025
.
26.
Ivekovic
,
A.
,
Montero-Sistiaga
,
M. L.
,
Vleugels
,
J.
,
Kruth
,
J.-P.
, and
Vanmeensel
,
K.
,
2021
, “
Crack Mitigation in Laser Powder Bed Fusion Processed Hastelloy X Using a Combined Numerical-Experimental Approach
,”
J. Alloys Compd.
,
864
, p.
158803
.
27.
Han
,
Q. Q.
,
Low
,
K. W. Q.
,
Gu
,
Y. C.
,
Wang
,
X. B.
,
Wang
,
L. Q.
,
Song
,
B.
,
Huang
,
C. Z.
, and
Setchi
,
R.
,
2021
, “
The Dynamics of Reinforced Particle Migration in Laser Powder Bed Fusion of Ni-Based Composite
,”
Powder Technol.
,
394
, pp.
714
723
.
28.
Liu
,
L.
,
Wang
,
D.
,
Deng
,
G.
,
Liu
,
Z.
,
Tan
,
C.
,
Zhou
,
X.
,
Han
,
C.
,
Jiang
,
R.
, and
Yang
,
Y.
,
2023
, “
Crack Inhibition to Enhance Strength-Ductility of CM247LC Alloy Fabricated by Laser Powder Bed Fusion
,”
Mater. Sci. Eng.: A
,
875
, p.
145114
.
29.
Yuan
,
Z.
,
Zhang
,
Z.
,
Bai
,
J.
,
Ma
,
R.
,
Zheng
,
J.
,
Zang
,
S.
,
Lou
,
Y.
,
Wang
,
J.
, and
Bai
,
X.
,
2023
, “
Quantitative and Qualitative Characterization of the Damage, Deformation Mechanisms, and Failure Modes of a Nickel-Based GH3536 Alloy Prepared Via Laser Powder Bed Fusion After Various Heat Treatments
,”
Mater. Sci. Eng.: A
,
876
, p.
145143
.
30.
Kang
,
N.
,
El Mansori
,
M.
,
Guittonneau
,
F.
,
Liao
,
H.
,
Fu
,
Y.
, and
Aubry
,
E.
,
2018
, “
Controllable Mesostructure, Magnetic Properties of Soft Magnetic Fe-Ni-Si by Using Selective Laser Melting From Nickel Coated High Silicon Steel Powder
,”
Appl. Surf. Sci.
,
455
, pp.
736
741
.
31.
Esmaeilizadeh
,
R.
,
Keshavarzkermani
,
A.
,
Ali
,
U.
,
Mahmoodkhani
,
Y.
,
Behravesh
,
B.
,
Jahed
,
H.
,
Bonakdar
,
A.
, and
Toyserkani
,
E.
,
2020
, “
Customizing Mechanical Properties of Additively Manufactured Hastelloy X Parts by Adjusting Laser Scanning Speed
,”
J. Alloys Compd.
,
812
, p.
152097
.
32.
Zhang
,
Z.
,
Han
,
Q.
,
Yang
,
S.
,
Yin
,
Y.
,
Gao
,
J.
, and
Setchi
,
R.
,
2021
, “
Laser Powder Bed Fusion of Advanced Submicrometer TiB2 Reinforced High-Performance Ni-Based Composite
,”
Mater. Sci. Eng.: A
,
817
, p.
141416
.
33.
Zhang
,
H.
,
Gu
,
D.
,
Ma
,
C.
,
Guo
,
M.
,
Wang
,
R.
,
Yang
,
J.
, and
Ge
,
Q.
,
2020
, “
Microstructure and Tribological Property of Selective Laser Melted Ni-Based Composites Using Different Scanning Strategies
,”
Vacuum
,
177
, p.
109439
.
34.
Dai
,
K.
,
He
,
X.
,
Zhang
,
W.
,
Kong
,
D.
,
Guo
,
R.
,
Hu
,
M.
,
He
,
K.
, and
Dong
,
C.
,
2023
, “
Tailoring the Microstructure and Mechanical Properties for Hastelloy X Alloy by Laser Powder Bed Fusion Via Scanning Strategy
,”
Mater. Des.
,
235
, p.
112386
.
35.
Benoit
,
M. J.
,
Mazur
,
M.
,
Easton
,
M. A.
, and
Brandt
,
M.
,
2021
, “
Effect of Alloy Composition and Laser Powder Bed Fusion Parameters on the Defect Formation and Mechanical Properties of Inconel 625
,”
Int. J. Adv. Manuf. Technol.
,
114
(
3–4
), pp.
915
927
.
36.
Tekoglu
,
E.
,
OBrien
,
A. D.
,
Bae
,
J.-S.
,
Lim
,
K.-H.
,
Liu
,
J.
,
Kavak
,
S.
,
Zhang
,
Y.
, et al
,
2024
, “
Metal Matrix Composite With Superior Ductility at 800 °C: 3D Printed In718 + ZrB2 by Laser Powder Bed Fusion
,”
Compos. Part B: Eng.
,
268
, p.
111052
.
37.
Liu
,
Z. Y.
,
Han
,
Q. Q.
,
Zhang
,
Z. H.
,
Wang
,
L. Q.
,
Ma
,
T.
,
Gao
,
Z. J.
,
Song
,
B.
,
Liu
,
H. L.
,
Huang
,
C. Z.
, and
Setchi
,
R.
,
2023
, “
Design of a Novel Crack-Free Precipitation-Strengthened Nickel-Based Superalloy and Composites for Laser Powder Bed Fusion
,”
Virtual Phys. Prototy.
,
18
(
1
), p.
e2224769
.
38.
Liu
,
G.
,
Li
,
B.
,
Zhang
,
S.
,
Liu
,
J.
,
Ying
,
H.
,
Li
,
D.
,
Xie
,
C.
, et al
,
2023
, “
Effect of Fe-Based Metallic Glass on Microstructure and Properties of Hastelloy X Manufactured by Laser Powder Bed Fusion
,”
J. Alloys Compd.
,
966
, p.
171561
.
39.
Zhang
,
Z.
,
Han
,
Q.
,
Liu
,
Z.
,
Gao
,
J.
,
Wang
,
L.
,
Liu
,
H.
,
Wang
,
R.
,
Ma
,
T.
, and
Gao
,
Z.
,
2022
, “
Combined Effects of Heat Treatment and TiB2 Content on the High-Temperature Tensile Performance of TiB2-Modified Ni-Based GH3230 Alloy Processed by Laser Powder Bed Fusion
,”
Mater. Sci. Eng.: A
,
861
, p.
144379
.
40.
Tiparti
,
D.
,
Wessman
,
A.
,
Cormier
,
J.
, and
Tin
,
S.
,
2023
, “
Comparison of the Stress Relaxation and Creep Behavior of Conventionally Forged and Additively Manufactured Rene 65
,”
J. Mater. Sci.
,
58
(
13
), pp.
5951
5969
.
41.
Yin
,
Y.
,
Zhang
,
J.
,
Yang
,
S.
,
Liu
,
T.
,
Han
,
Q.
,
Zhang
,
Z.
, and
Yang
,
H.
,
2021
, “
Effect of Microstructure on the Electrochemical Dissolution Behaviour of Hastelloy (R) X Superalloy Processed by Selective Laser Melting and Heat Treatments
,”
Mater. Des.
,
206
, p.
109828
.
42.
Shen
,
J.
,
Lopes
,
J. G.
,
Zeng
,
Z.
,
Choi
,
Y. T.
,
Maawad
,
E.
,
Schell
,
N.
,
Kim
,
H. S.
,
Mishra
,
R. S.
, and
Oliveira
,
J. P.
,
2023
, “
Deformation Behavior and Strengthening Effects of an Eutectic AlCoCrFeNi2.1 High Entropy Alloy Probed by In-Situ Synchrotron X-Ray Diffraction and Post-mortem EBSD
,”
Mater. Sci. Eng.: A
,
872
, p.
144946
.
43.
Shen
,
J.
,
Zhang
,
W.
,
Lopes
,
J. G.
,
Pei
,
Y.
,
Zeng
,
Z.
,
Maawad
,
E.
,
Schell
,
N.
,
Baptista
,
A. C.
,
Mishra
,
R. S.
, and
Oliveira
,
J. P.
,
2024
, “
Evolution of Microstructure and Deformation Mechanisms in a Metastable Fe42Mn28Co10Cr15Si5 High Entropy Alloy: A Combined In-Situ Synchrotron X-Ray Diffraction and EBSD Analysis
,”
Mater. Des.
,
238
, p.
112662
.
44.
Hu
,
J.
,
Lin
,
X.
, and
Hu
,
Y.
,
2024
, “
High Wear Resistance and Strength of Hastelloy X Reinforced With TiC Fabricated by Laser Powder Bed Fusion Additive Manufacturing
,”
Appl. Surf. Sci.
,
648
, p.
159004
.
45.
Min
,
S.
,
Liu
,
H.
,
Yang
,
M.
,
Zhang
,
H.
,
Hou
,
J.
,
Zhang
,
K.
,
Liang
,
J.
, et al
,
2022
, “
High-Temperature Oxidation Performance of Ni-Based GH3536 Superalloy Fabricated by Laser Powder Bed Fusion
,”
npj Mater. Degrad.
,
6
(
1
), p.
66
.
46.
Zhang
,
Z.
,
Han
,
Q.
,
Liu
,
Z.
,
Wang
,
X.
,
Wang
,
L.
,
Yang
,
X.
,
Ma
,
T.
, and
Gao
,
Z.
,
2022
, “
Influence of the TiB2 Content on the Processability, Microstructure and High-Temperature Tensile Performance of a Ni-Based Superalloy by Laser Powder Bed Fusion
,”
J. Alloys Compd.
,
908
, p.
164656
.
47.
Nagahari
,
T.
,
Nagoya
,
T.
,
Kakehi
,
K.
,
Sato
,
N.
, and
Nakano
,
S.
,
2020
, “
Microstructure and Creep Properties of Ni-Base Superalloy IN718 Built Up by Selective Laser Melting in a Vacuum Environment
,”
Metals
,
10
(
3
), p.
362
.
48.
Cheng
,
X.
,
Wei
,
L.
,
Wang
,
R.
,
He
,
J.
,
Sha
,
J.
, and
Ma
,
Z.
,
2023
, “
Achieving Well-Balanced Strength and Ductility in Laser Powder Bed Fusion Additively Manufactured Nickel-Based Superalloys by Doping Multiple Oxides
,”
Mater. Sci. Eng.: A
,
887
, p.
145773
.
49.
Han
,
Q. Q.
,
Gu
,
Y. C.
,
Setchi
,
R.
,
Lacan
,
F.
,
Johnston
,
R.
,
Evans
,
S. L.
, and
Yang
,
S. F.
,
2019
, “
Additive Manufacturing of High-Strength Crack-Free Ni-Based Hastelloy X Superalloy
,”
Addit. Manuf.
,
30
, p.
100919
.
50.
Liu
,
S. Y.
,
Li
,
H. Q.
,
Qin
,
C. X.
,
Zong
,
R.
, and
Fang
,
X. Y.
,
2020
, “
The Effect of Energy Density on Texture and Mechanical Anisotropy in Selective Laser Melted Inconel 718
,”
Mater. Des.
,
191
, p.
108642
.
51.
Wan
,
H. Y.
,
Zhou
,
Z. J.
,
Li
,
C. P.
,
Chen
,
G. F.
, and
Zhang
,
G. P.
,
2019
, “
Effect of Scanning Strategy on Mechanical Properties of Selective Laser Melted Inconel 718
,”
Mater. Sci. Eng.: A
,
753
, pp.
42
48
.
You do not currently have access to this content.