Abstract

The use of photopolymer resins in three-dimensional (3D) printing has increased rapidly due to monomers or oligomers, solvents, photoinitiators, and a few additives serving as auxiliary agents for particular functions in this resin. However, the devices or parts with antibacterial properties are still necessary. This study investigated the effects of chitosan addition on the mechanical, surface, and antimicrobial properties of 3D-printed photopolymer samples. Results indicated that the average tensile strength dropped from 14.08 MPa to 11.82 MPa, and the average surface roughness of specimens increased from 0.305 µm to 0.659 µm as the chitosan/resin concentration increased from 0% to 0.2%, respectively. In addition, the contact angle increased when chitosan/resin concentrations increased. Furthermore, all chitosan-containing specimens showed at least an 80% relative antibacterial ability. The findings indicate that 3D-printed photopolymer resins with chitosan addition have potential for prosthetics application.

References

1.
Chung
,
M.
,
Radacsi
,
N.
,
Robert
,
C.
,
McCarthy
,
E. D.
,
Callanan
,
A.
,
Conlisk
,
N.
,
Hoskins
,
P. R.
, and
Koutsos
,
V.
,
2018
, “
On the Optimization of Low-Cost FDM 3D Printers for Accurate Replication of Patient-Specific Abdominal Aortic Aneurysm Geometry
,”
3D Print. Med.
,
4
(
1
), p.
2
.
2.
Panwar
,
A.
, and
Tan
,
L.
,
2016
, “
Current Status of Bioinks for Micro-Extrusion-Based 3D Bioprinting
,”
Molecules
,
21
(
6
), p.
685
.
3.
Cesarano
,
J.
,
1998
, “
A Review of Robocasting Technology
,”
MRS Online Proc. Libr.
,
542
(
1
), pp.
133
139
.
4.
Gayer
,
C.
,
Ritter
,
J.
,
Bullemer
,
M.
,
Grom
,
S.
,
Jauer
,
L.
,
Meiners
,
W.
,
Pfister
,
A.
, et al
,
2019
, “
Development of a Solvent-Free Polylactide/Calcium Carbonate Composite for Selective Laser Sintering of Bone Tissue Engineering Scaffolds
,”
Mater. Sci. Eng.: C
,
101
, pp.
660
673
.
5.
Zhang
,
L.-C.
, and
Attar
,
H.
,
2016
, “
Selective Laser Melting of Titanium Alloys and Titanium Matrix Composites for Biomedical Applications: A Review
,”
Adv. Eng. Mater.
,
18
(
4
), pp.
463
475
.
6.
Sing
,
S. L.
,
An
,
J.
,
Yeong
,
W. Y.
, and
Wiria
,
F. E.
,
2016
, “
Laser and Electron-Beam Powder-Bed Additive Manufacturing of Metallic Implants: A Review on Processes, Materials and Designs
,”
J. Orthop. Res.
,
34
(
3
), pp.
369
385
.
7.
Guo
,
N.
, and
Leu
,
M. C.
,
2013
, “
Additive Manufacturing: Technology, Applications and Research Needs
,”
Front. Mech. Eng.
,
8
(
3
), pp.
215
243
.
8.
Zhai
,
Y.
,
Lados
,
D. A.
,
Brown
,
E. J.
, and
Vigilante
,
G. N.
,
2016
, “
Fatigue Crack Growth Behavior and Microstructural Mechanisms in Ti-6Al-4V Manufactured by Laser Engineered Net Shaping
,”
Int. J. Fatigue
,
93
, pp.
51
63
.
9.
Singh
,
R.
,
2011
, “
Process Capability Study of Polyjet Printing for Plastic Components
,”
J. Mech. Sci. Technol.
,
25
(
4
), pp.
1011
1015
.
10.
Melchels
,
F. P. W.
,
Feijen
,
J.
, and
Grijpma
,
D. W.
,
2010
, “
A Review on Stereolithography and Its Applications in Biomedical Engineering
,”
Biomaterials
,
31
(
24
), pp.
6121
6130
.
11.
Mott
,
E. J.
,
Busso
,
M.
,
Luo
,
X.
,
Dolder
,
C.
,
Wang
,
M. O.
,
Fisher
,
J. P.
, and
Dean
,
D.
,
2016
, “
Digital Micromirror Device (DMD)-Based 3D Printing of Poly(Propylene Fumarate) Scaffolds
,”
Mater. Sci. Eng.: C
,
61
, pp.
301
311
.
12.
Calvert
,
P.
,
2001
, “
Inkjet Printing for Materials and Devices
,”
Chem. Mater.
,
13
(
10
), pp.
3299
3305
.
13.
Awad
,
A.
,
Goyanes
,
A.
,
Basit
,
A. W.
,
Zidan
,
A. S.
,
Xu
,
C.
,
Li
,
W.
,
Narayan
,
R. J.
, and
Chen
,
R. K.
,
2023
, “
A Review of State-of-the-Art on Enabling Additive Manufacturing Processes for Precision Medicine
,”
ASME J. Manuf. Sci. Eng.
,
145
(
1
), p.
010802
.
14.
Jindal
,
P.
,
Juneja
,
M.
,
Siena
,
F. L.
,
Bajaj
,
D.
, and
Breedon
,
P.
,
2019
, “
Mechanical and Geometric Properties of Thermoformed and 3D Printed Clear Dental Aligners
,”
Am. J. Orthodont. Dentofacial Orthop.
,
156
(
5
), pp.
694
701
.
15.
Nasef
,
A. A.
,
El-Beialy
,
A. R.
, and
Mostafa
,
Y. A.
,
2014
, “
Virtual Techniques for Designing and Fabricating a Retainer
,”
Am. J. Orthodont. Dentofacial Orthop.
,
146
(
3
), pp.
394
398
.
16.
Tuncay
,
V.
, and
van Ooijen
,
P. M. A.
,
2019
, “
3D Printing for Heart Valve Disease: A Systematic Review
,”
Eur. Radiol. Exp.
,
3
(
1
), p.
9
.
17.
Khalaj
,
R.
,
Tabriz
,
A. G.
,
Okereke
,
M. I.
, and
Douroumis
,
D.
,
2021
, “
3D Printing Advances in the Development of Stents
,”
Int. J. Pharm.
,
609
, p.
121153
.
18.
Elomaa
,
L.
, and
Yang
,
Y. P.
,
2016
, “
Additive Manufacturing of Vascular Grafts and Vascularized Tissue Constructs
,”
Tissue Eng. Part B: Rev.
,
23
(
5
), pp.
436
450
.
19.
Scherer
,
K.
,
Soerjawinata
,
W.
,
Schaefer
,
S.
,
Kockler
,
I.
,
Ulber
,
R.
,
Lakatos
,
M.
,
Bröckel
,
U.
,
Kampeis
,
P.
, and
Wahl
,
M.
,
2022
, “
Influence of Wettability and Surface Design on the Adhesion of Terrestrial Cyanobacteria to Additive Manufactured Biocarriers
,”
Bioprocess Biosyst. Eng.
,
45
(
5
), pp.
931
941
.
20.
Kargupta
,
R.
,
Bok
,
S.
,
Darr
,
C. M.
,
Crist
,
B. D.
,
Gangopadhyay
,
K.
,
Gangopadhyay
,
S.
, and
Sengupta
,
S.
,
2014
, “
Coatings and Surface Modifications Imparting Antimicrobial Activity to Orthopedic Implants
,”
WIRES Nanomed. Nanobiotechnol.
,
6
(
5
), pp.
475
495
.
21.
Muwaffak
,
Z.
,
Goyanes
,
A.
,
Clark
,
V.
,
Basit
,
A. W.
,
Hilton
,
S. T.
, and
Gaisford
,
S.
,
2017
, “
Patient-Specific 3D Scanned and 3D Printed Antimicrobial Polycaprolactone Wound Dressings
,”
Int. J. Pharm.
,
527
(
1
), pp.
161
170
.
22.
Water
,
J. J.
,
Bohr
,
A.
,
Boetker
,
J.
,
Aho
,
J.
,
Sandler
,
N.
,
Nielsen
,
H. M.
, and
Rantanen
,
J.
,
2015
, “
Three-Dimensional Printing of Drug-Eluting Implants: Preparation of an Antimicrobial Polylactide Feedstock Material
,”
J. Pharm. Sci.
,
104
(
3
), pp.
1099
1107
.
23.
Mills
,
D. K.
,
Jammalamadaka
,
U.
,
Tappa
,
K.
, and
Weisman
,
J.
,
2018
, “
Studies on the Cytocompatibility, Mechanical and Antimicrobial Properties of 3D Printed Poly(Methyl Methacrylate) Beads
,”
Bioactive Mater.
,
3
(
2
), pp.
157
166
.
24.
Zuniga
,
J. M.
,
2018
, “
3D Printed Antibacterial Prostheses
,”
Appl. Sci.
,
8
(
9
), p.
1651
.
25.
Guo
,
Q.
,
Cai
,
X.
,
Wang
,
X.
, and
Yang
,
J.
,
2013
, “
“Paintable” 3D Printed Structures via a Post-ATRP Process With Antimicrobial Function for Biomedical Applications
,”
J. Mater. Chem. B
,
1
(
48
), pp.
6644
6649
.
26.
Yue
,
J.
,
Zhao
,
P.
,
Gerasimov
,
J. Y.
,
van de Lagemaat
,
M.
,
Grotenhuis
,
A.
,
Rustema-Abbing
,
M.
,
van der Mei
,
H. C.
,
Busscher
,
H. J.
,
Herrmann
,
A.
, and
Ren
,
Y.
,
2015
, “
3D-Printable Antimicrobial Composite Resins
,”
Adv. Funct. Mater.
,
25
(
43
), pp.
6756
6767
.
27.
Sa
,
L.
,
Kaiwu
,
L.
,
Shenggui
,
C.
,
Junzhong
,
Y.
,
Yongguang
,
J.
,
Lin
,
W.
, and
Li
,
R.
,
2019
, “
3D Printing Dental Composite Resins With Sustaining Antibacterial Ability
,”
J. Mater. Sci.
,
54
(
4
), pp.
3309
3318
.
28.
Li
,
Z.
,
Wang
,
C.
,
Qiu
,
W.
, and
Liu
,
R.
,
2019
, “
Antimicrobial Thiol–ene–Acrylate Photosensitive Resins for DLP 3D Printing
,”
Photochem. Photobiol.
,
95
(
5
), pp.
1219
1229
.
29.
Mangal
,
U.
,
Min
,
Y. J.
,
Seo
,
J.-Y.
,
Kim
,
D.-E.
,
Cha
,
J.-Y.
,
Lee
,
K.-J.
,
Kwon
,
J.-S.
, and
Choi
,
S.-H.
,
2020
, “
Changes in Tribological and Antibacterial Properties of Poly(Methyl Methacrylate)-Based 3D-Printed Intra-Oral Appliances by Incorporating Nanodiamonds
,”
J. Mech. Behav. Biomed. Mater.
,
110
, p.
103992
.
30.
Olmos
,
D.
, and
González-Benito
,
J.
,
2021
, “
Polymeric Materials With Antibacterial Activity: A Review
,”
Polymers
,
13
(
4
), p.
613
.
31.
Doganay
,
M. T.
,
John Chelliah
,
C.
,
Tozluyurt
,
A.
,
Hujer
,
A. M.
,
Obaro
,
S. K.
,
Gurkan
,
U.
,
Patel
,
R.
,
Bonomo
,
R. A.
, and
Draz
,
M.
,
2023
, “
3D Printed Materials for Combating Antimicrobial Resistance
,”
Mater. Today
,
67
, pp.
371
398
.
32.
Jalageri
,
M. B.
, and
Kumar
,
G. C. M.
,
2024
, “
Graphene Oxide Reinforced Polyvinyl Alcohol/Chitosan Composite Hydrogel for Cartilage Regeneration
,”
Polym. Bull.
,
81
(
12
), pp.
1
18
.
33.
Tardajos
,
M. G.
,
Cama
,
G.
,
Dash
,
M.
,
Misseeuw
,
L.
,
Gheysens
,
T.
,
Gorzelanny
,
C.
,
Coenye
,
T.
, and
Dubruel
,
P.
,
2018
, “
Chitosan Functionalized Poly-ε-Caprolactone Electrospun Fibers and 3D Printed Scaffolds as Antibacterial Materials for Tissue Engineering Applications
,”
Carbohydr. Polym.
,
191
, pp.
127
135
.
34.
Martina
,
S.
,
Rongo
,
R.
,
Bucci
,
R.
,
Razionale
,
A. V.
,
Valletta
,
R.
, and
D'Antò
,
V.
,
2019
, “
In Vitro Cytotoxicity of Different Thermoplastic Materials for Clear Aligners
,”
Angle Orthodont.
,
89
(
6
), pp.
942
945
.
35.
He
,
Y.
,
Wang
,
F.
,
Wang
,
X.
,
Zhang
,
J.
,
Wang
,
D.
, and
Huang
,
X.
,
2021
, “
A Photocurable Hybrid Chitosan/Acrylamide Bioink for DLP Based 3D Bioprinting
,”
Mater. Des.
,
202
, p.
109588
.
36.
Chang
,
H. K.
,
Yang
,
D. H.
,
Ha
,
M. Y.
,
Kim
,
H. J.
,
Kim
,
C. H.
,
Kim
,
S. H.
,
Choi
,
J. W.
, and
Chun
,
H. J.
,
2022
, “
3D Printing of Cell-Laden Visible Light Curable Glycol Chitosan Bioink for Bone Tissue Engineering
,”
Carbohydr. Polym.
,
287
, p.
119328
.
37.
Silva
,
I. D.
,
Boaro
,
L. C. C.
,
Muniz
,
B. V.
,
Cogo-Muller
,
K.
,
Gonçalves
,
F.
, and
Brandt
,
W. C.
,
2024
, “
The Impact of Chitosan in Experimental Resin With Different Photoinitiator Systems
,”
J. Mech. Behav. Biomed. Mater.
,
150
, p.
106323
.
38.
ASTM D638–14
,
2014
,
Standard Test Method for Tensile Properties of Plastics
,
ASTM International
,
West Conshohocken, PA, USA
.
39.
Jordan
,
H. J.
,
Wegner
,
M.
, and
Tiziani
,
H.
,
1998
, “
Highly Accurate Non-Contact Characterization of Engineering Surfaces Using Confocal Microscopy
,”
Meas. Sci. Technol.
,
9
(
7
), pp.
1142
1151
.
40.
Shahabi
,
M.
,
Movahedi Fazel
,
S.
, and
Rangrazi
,
A.
,
2021
, “
Incorporation of Chitosan Nanoparticles Into a Cold-Cure Orthodontic Acrylic Resin: Effects on Mechanical Properties
,”
Biomimetics
,
6
(
1
), p.
7
.
41.
Cheng
,
Y.-L.
, and
Chen
,
F.
,
2017
, “
Preparation and Characterization of Photocured Poly (ε-Caprolactone) Diacrylate/Poly (Ethylene Glycol) Diacrylate/Chitosan for Photopolymerization-Type 3D Printing Tissue Engineering Scaffold Application
,”
Mater. Sci. Eng.: C
,
81
, pp.
66
73
.
42.
Yang
,
N.
,
Zhang
,
D.-D.
,
Li
,
X.-D.
,
Lu
,
Y.-Y.
,
Qiu
,
X.-H.
,
Zhang
,
J.-S.
, and
Kong
,
J.
,
2017
, “
Topography, Wettability, and Electrostatic Charge Consist Major Surface Properties of Intraocular Lenses
,”
Curr. Eye Res.
,
42
(
2
), pp.
201
210
.
43.
Elsaka
,
S. E.
,
2012
, “
Antibacterial Activity and Adhesive Properties of a Chitosan-Containing Dental Adhesive
,”
Quintessence Int.
,
43
(
7
), pp.
603
613
.
44.
Rajabi
,
M.
,
McConnell
,
M.
,
Cabral
,
J.
, and
Ali
,
M. A.
,
2021
, “
Chitosan Hydrogels in 3D Printing for Biomedical Applications
,”
Carbohydr. Polym.
,
260
, p.
117768
.
You do not currently have access to this content.