Ultrasonic metal welding is widely used for joining multiple layers of dissimilar metals, such as aluminum/copper battery tabs welding onto copper busbars. It is therefore important to have a robust product/process design using ultrasonic metal welding that ensures consistent welds with desired quality. In this work, the effects of longitudinal and flexural vibrations of the battery tab during ultrasonic welding on the development of axial normal stresses that occasionally cause cracks near the weld area are studied by applying a one-dimensional continuous vibration model for the battery tab. Analysis results indicate that fracture could occur near the weld area, due to low cycle fatigue as a result of large dynamic stresses induced by resonant flexural vibration of the battery tab during welding. This study provides a fundamental understanding of battery tab dynamics during ultrasonic welding and its effects on weld quality, and can be used to develop guidelines for product/process design of ultrasonically welded battery tabs.

References

1.
Lee
,
S. S.
,
Kim
,
T. H.
,
Hu
,
S. J.
,
Cai
,
W. W.
, and
Abell
,
J. A.
,
2010
, “
Joining Technologies for Automotive Lithium-Ion Battery Manufacturing—A Review
,”
Proceedings of the ASME 2010 International Manufacturing Science and Engineering Conference
,
Erie
,
PA
, Paper No. MSEC2010-34168, Oct. 12–15.
2.
Lee
,
S. S.
,
Kim
,
T. H.
,
Hu
,
S. J.
,
Cai
,
W.
,
Abell
,
J. A.
, and
Li
,
J.
,
2013
, “
Characterization of Ultrasonic Metal Weld Quality for Lithium-Ion Battery Tab Joining
,”
ASME J. Manuf. Sci. Eng.
,
135
(
2
), p.
021004
.10.1115/1.4023364
3.
Kim
,
T. H.
,
Yum
,
J.
,
Hu
,
S. J.
,
Spicer
,
J. P.
, and
Abell
,
J. A.
,
2011
, “
Process Robustness of Single Lap Ultrasonic Welding of Thin, Dissimilar Materials
,”
CIRP Ann.– Manuf. Technol.
,
60
, pp.
17
20
.10.1016/j.cirp.2011.03.016
4.
Doumanidis
,
C.
, and
Gao
,
Y.
,
2004
, “
Mechanical Modeling of Ultrasonic Welding
,”
Welding J.
,
83
, pp.
140S
146S
. Available at: http://www.aws.org/wj/supplement/04-2004-DOUMANDIS-s.pdf
5.
Zhang
,
C.
, and
Li
,
L.
,
2009
, “
A Coupled Thermal-Mechanical Analysis of Ultrasonic Bonding Mechanism
,”
Metall. Mater. Trans B
,
40
(
2
), pp.
196
207
.10.1007/s11663-008-9224-9
6.
Rozenberg
,
L.
, and
Mitskevich
,
A.
,
1973
, “
Ultrasonic Welding of Metals
,”
Physical Principles of Ultrasonic Technology, V.1, Part 2
, Acoustic Institute Academy of Sciences of the USSR, Moscow, USSR, 1970,
Plenum Press
,
New York
.
7.
Devine
,
J.
,
1984
, “
Joining Metals with Ultrasonic Welding
,”
Mach. Des.
,
56
(
21
), pp.
91
95
.
8.
Flood
,
G.
,
1997
, “
Ultrasonic Energy Welds Copper to Aluminum
,”
Welding J.
,
76
(
1
), pp.
43
45
.
9.
Hetrick
,
E. T.
,
Baer
,
J. R.
,
Zhu
,
W.
,
Reatherford
,
L. V.
,
Grima
,
A. J.
,
Scholl
,
D. J.
,
Wilkosz
,
D. E.
,
Fatima
,
S.
, and
Ward
,
S. M.
,
2009
, “
Ultrasonic Metal Welding Process Robustness in Aluminum Automotive Body Construction Applications
,”
Welding J.
,
88
, pp.
149
158
. Available at: http://www.aws.org/wj/supplement/wj0709-149.pdf
10.
Viswanath
,
A. G. K.
,
Zhang
,
X.
,
Ganesh
,
V. P.
, and
Chun
,
L.
,
2007
, “
Numerical Study of Gold Wire Bonding Process on Cu/Low-K Structures
,”
IEEE Trans. Adv. Packaging
,
30
(
3
), pp.
448
456
.10.1109/TADVP.2006.890213
11.
Siddiq
,
A.
, and
Ghassemieh
,
E.
,
2009
, “
Theoretical and FE Analysis of Ultrasonic Welding of Aluminum Alloy 3003
,”
ASME J. Manuf. Sci. Eng.
,
131
(
4
), pp.
1
11
.10.1115/1.3160583
12.
Lee
,
D.
,
Kannatey-Asibu
, Jr.,
E.
, and
Cai
,
W.
,
2013
, “
Ultrasonic Welding Simulations for Multiple Layers of Lithium-Ion Battery Tabs
,
ASME J. Manuf. Sci. Eng.
,
135
(
6
), p.
061011
.10.1115/1.4025668
13.
Elangovan
,
S.
,
Semeer
,
S.
, and
Prakasan
,
K.
,
2009
, “
Temperature and Stress Distribution in Ultrasonic Metal Welding—An FEA-Based Study
,”
J. Mater. Process. Technol.
,
209
, pp.
1143
1150
.10.1016/j.jmatprotec.2008.03.032
14.
Gao
,
Y.
, and
Doumanidis
,
C.
,
2002
, “
Mechanical Analysis of Ultrasonic Bonding for Rapid Prototyping
,”
ASME J. Manuf. Sci. Eng.
,
124
, pp.
426
434
.10.1115/1.1459082
15.
Li
,
H.
,
Choi
,
H.
,
Zhao
,
J.
,
Li
,
X. C.
,
Cai
,
W.
, and
Abell
,
J. A.
,
2013
, “
Transient Temperature and Heat Flux Measurement in Ultrasonic Joining of Battery Tabs Using Thin-Film Micro Sensors
,”
ASME J. Manuf. Sci. Eng.
,
135
(
5
), p.
051015
.10.1115/1.4024816
16.
Zhao
,
J.
,
Li
,
H.
,
Choi
,
H.
,
Cai
,
W.
,
Abell
,
J. A.
, and
Li
,
X.
,
2013
, “
Insertable Thin Film Thermocouples for in Situ Transient Temperature Monitoring in Ultrasonic Metal Welding of Battery Tabs
,”
J. Manuf. Processes
,
15
(
1
), pp.
136
140
.10.1016/j.jmapro.2012.10.002
17.
Kang
,
B.
,
Cai
,
W.
, and
Tan
,
C. A.
,
2013
, “
Dynamic Response Of Battery Tabs Under Ultrasonic Welding
,”
ASME J. Manuf. Sci. Eng.
,
135
(
5
), p.
051013
.10.1115/1.4024535
18.
Graff
,
K. F.
,
1974
, “
Process Applications of Power Ultrasonics—A Review
,”
Proceedings of IEEE Ultrasonics Symposium
, pp.
628
641
.
19.
Jagota
,
A.
, and
Dawson
,
P. R.
,
1987
, “
The Influence of Lateral Wall Vibrations on the Ultrasonic Welding of Thin-Walled Parts
,”
ASME J. Eng. Ind.
,
109
, pp.
140
147
.10.1115/1.3187104
20.
Lee
,
S. S.
,
Kim
,
T. H.
,
Cai
,
W. W.
, and
Abell
,
J. A.
,
2014
, “
Parasitic Vibration Attenuation in Ultrasonic Welding of Battery Tabs
,”
Int. J. Adv. Manuf. Technol.
,
71
, pp.
181
195
.10.1007/s00170-013-5446-3
21.
Kang
,
B.
,
Cai
,
W.
, and
Tan
,
C. A.
,
2013
, “
Vibrational Energy Loss Analysis of Battery Tab Ultrasonic Welding
,”
SME J. Manuf. Processes
(in press). Available at: http://www.sciencedirect.com/science/article/pii/S1526612513001254
22.
Tan
,
C. A.
,
Kang
,
B.
, and
Cai
,
W.
,
2012
, “
GOALI: Vibration Energy Flow and Mitigation Via Targeted Energy Transfer in Power Ultrasonic Metal Welding
,”
NSF
, (Submitted).
23.
De Vries
,
E.
,
2004
, “
Mechanics and Mechanisms of Ultrasonic Metal Welding
,” Ph.D. Dissertation,
The Ohio State University
,
Columbus, OH
.
24.
Callister
, Jr.,
W. D.
,
2000
,
Material Science and Engineering: An Introduction
, 5th ed.,
John Wiley & Sons, Inc.
,
New York
.
25.
Mršnik
,
M.
,
Slavič
,
J.
, and
Boltežar
,
M.
,
2012
, “
Frequency–Domain Methods for a Vibration-Fatigue-Life Estimation—Application to Real Data
,”
Int. J. Fatigue
,
47
, pp.
8
17
.10.1016/j.ijfatigue.2012.07.005
26.
Sofronas
,
A.
,
2012
,
Case Histories in Vibration Analysis and Metal Fatigue for the Practicing Engineer
,
John Wiley & Sons, Inc.
,
Hoboken, NJ
.
27.
Graff
,
K. F.
,
1975
,
Wave Motion in Elastic Solids
,
Dover Publications, Inc.
,
New York
.
28.
Meirovitch
,
L.
,
2001
,
Fundamentals of Vibrations
,
McGraw-Hill Companies, Inc
,
New York
.
You do not currently have access to this content.