In this study, mechanical properties of three types of polymeric foams (polypropylene (PP), polystyrene (PS), and polyurethane (PU) foams) are investigated. Focus has been placed on the strain rate and temperature effects on these foams under large deformations. Selected experimental results from uniaxial compression, hydrostatic compression, and simple shear tests are presented. A phenomenological hydrodynamic elastoplastic constitutive law is developed to model these polymeric foams. Numerical implementation and validation of the constitutive model are also described.
1.
Barbat, S. D., and Prasad, P., 1995, “Finite Element Modeling of Structural Foam and Head Impact Interaction with Vehicle Upper Interior,” SAE paper 950885, pp. 173–184.
2.
Bilkhu, S. S., Founnas, M., and Nusholtz, G. S., 1993, “Material Modeling of Structure Foams in Finite Element Analysis Using Compressive Uniaxial and Triaxial Data,” SAE Technical Paper Series 930434, International Congress and Exposition, Detroit, MI.
3.
Chang, F. S., Hallquist J. O., Lu, D. X., Shahidi, B. K., Kudelko, C. M., and Tekelly, J. P., 1994, “Finite Element Analysis of Low-Density High-hysteresis Foam Materials and the Application in the Automotive Industry,” SAE paper 940908, pp. 71–78.
4.
Gibson, L. J., and Ashby, M. F., 1988, Cellular Solids-Structural and Properties, Pergamon Press, New York.
5.
Gibson
L. J.
Zhang
J.
Shercliff
T. L.
Gibson
L. J.
Ashby
M. F.
1989
, “Failure Surface for Cellular Materials under Multiaxial Loads-I. Modeling
,” International Journal of Mechanical Science
, Vol. 31
, No. 9
, pp. 635
–663
.6.
Hallquist, J. O., 1994, LS-DYNA3D Theoretical Manual, LSTC Report 1018.
7.
Hughes, J. R., 1983, “Numerical Implementation of Constitutive Models: Rate-Independent Deviatoric Plasticity,” Workshop on the Theoretical Foundation for Large-Scale Computations of Nonlinear Material Behavior, Northwestern University, Evanston, IL, Oct.
8.
Krieg, R. D., 1972, “A Simple Constitutive Description for Soils and Crushable Foam,” SCDR-72-0883, Sandia National Laboratories, Albuquerque, NM.
9.
Nagy
A.
Ko
W. L.
Lindholm
U. S.
1964
, “Mechanical Behavior of Foamed Materials under Dynamic Compression
,” Journals of Cellular Plastics
, Vol. 10
, pp. 127
–134
.10.
Neilsen
M. K.
Krieg
R. D.
Schreyer
H. L.
1995
, “A Constitutive Theory for Rigid Polyurethane Foam
,” Polymer Engineering and Science
, Vol. 35
, pp. 387
–394
.11.
Ortiz
M.
Simo
J. C.
1986
, “An Analysis of a New Class of Integration Algorithms for Elastoplastic Constitutive Relations
,” International Journal for Numerical Methods in Engineering
, Vol. 23
, pp. 353
–366
.12.
Patel, M. R. and Finnie, I., 1969, The Deformation and Fracture of Rigid Cellular Plastics under Multiaxial Stress, Lawrence Livermore National Laboratories, Albuquerque, NM, SAND86-2927.
13.
Puso, M. A., and Govindjee, 1995, “A Phenomenological Constitutive Model for Polymeric Foam,” Mechanics of Plastics and Plastic Composites, MD-Vol. 68/AMD-Vol. 215, ASME, pp. 159–176.
14.
Ramon
O.
Mirahi
S.
Miltz
J.
1990
, “Mechanical Properties and Behavior of Open Cell Foams Used as Cushioning Materials
,” Polymer Engineering and Science
, Vol. 30
, pp. 197
–201
.15.
Rush
K. C.
1969
, “Load-Compression Behavior of Flexible Foams
,” Journal of Applied Polymer Science
, Vol. 13
, pp. 2297
–2311
.16.
Shaw
M. C.
Sata
T.
1966
, “The Plastic Behavior of Cellular Materials
,” International Journal of Mechanical Science
, Vol. 8
, pp. 469
469
.17.
Schofield, A. and Worth, C. P., 1968, Critical State Soil Mechanics, McGraw-Hill, New York.
18.
Schreyer, H. L., Kulak, R. F., and Kramer, J. M., 1979 “Accurate Numerical Solutions for Elastic-Plastic Models,” ASME Journal of Pressure Vessel Technology, Vol. 101.
19.
Sherwood
J. A.
Frost
C. C.
1992
, “Constitutive Modeling and Simulation of Energy Absorbing Polyurethane Foam under Impact Loading
,” Polymer Engineering and Science
, Vol. 32
, No. 16
, pp. 1138
–1146
.20.
Triantafillou
T. C.
Zhang
J.
Shercliff
T. L.
Gibson
L. J.
Ashby
M. F.
1989
, “Failure Surfaces for Cellular Materials under Multiaxial Loads-II. Comparisons of Models with Experiment
,” International Journal of Mechanical Science
, Vol. 31
, No. 9
, pp. 665
–678
.21.
Triantafillou
T. C.
Gibson
L. J.
1990
, “Multiaxial Failure Criteria for Brittle Foams
,” International Journal of Mechanical Science
, Vol. 32
, No. 6
, pp. 479
–496
.
This content is only available via PDF.
Copyright © 1997
by The American Society of Mechanical Engineers
You do not currently have access to this content.