In this study, mechanical properties of three types of polymeric foams (polypropylene (PP), polystyrene (PS), and polyurethane (PU) foams) are investigated. Focus has been placed on the strain rate and temperature effects on these foams under large deformations. Selected experimental results from uniaxial compression, hydrostatic compression, and simple shear tests are presented. A phenomenological hydrodynamic elastoplastic constitutive law is developed to model these polymeric foams. Numerical implementation and validation of the constitutive model are also described.

1.
Barbat, S. D., and Prasad, P., 1995, “Finite Element Modeling of Structural Foam and Head Impact Interaction with Vehicle Upper Interior,” SAE paper 950885, pp. 173–184.
2.
Bilkhu, S. S., Founnas, M., and Nusholtz, G. S., 1993, “Material Modeling of Structure Foams in Finite Element Analysis Using Compressive Uniaxial and Triaxial Data,” SAE Technical Paper Series 930434, International Congress and Exposition, Detroit, MI.
3.
Chang, F. S., Hallquist J. O., Lu, D. X., Shahidi, B. K., Kudelko, C. M., and Tekelly, J. P., 1994, “Finite Element Analysis of Low-Density High-hysteresis Foam Materials and the Application in the Automotive Industry,” SAE paper 940908, pp. 71–78.
4.
Gibson, L. J., and Ashby, M. F., 1988, Cellular Solids-Structural and Properties, Pergamon Press, New York.
5.
Gibson
L. J.
,
Zhang
J.
,
Shercliff
T. L.
,
Gibson
L. J.
, and
Ashby
M. F.
,
1989
, “
Failure Surface for Cellular Materials under Multiaxial Loads-I. Modeling
,”
International Journal of Mechanical Science
, Vol.
31
, No.
9
, pp.
635
663
.
6.
Hallquist, J. O., 1994, LS-DYNA3D Theoretical Manual, LSTC Report 1018.
7.
Hughes, J. R., 1983, “Numerical Implementation of Constitutive Models: Rate-Independent Deviatoric Plasticity,” Workshop on the Theoretical Foundation for Large-Scale Computations of Nonlinear Material Behavior, Northwestern University, Evanston, IL, Oct.
8.
Krieg, R. D., 1972, “A Simple Constitutive Description for Soils and Crushable Foam,” SCDR-72-0883, Sandia National Laboratories, Albuquerque, NM.
9.
Nagy
A.
,
Ko
W. L.
, and
Lindholm
U. S.
,
1964
, “
Mechanical Behavior of Foamed Materials under Dynamic Compression
,”
Journals of Cellular Plastics
, Vol.
10
, pp.
127
134
.
10.
Neilsen
M. K.
,
Krieg
R. D.
, and
Schreyer
H. L.
,
1995
, “
A Constitutive Theory for Rigid Polyurethane Foam
,”
Polymer Engineering and Science
, Vol.
35
, pp.
387
394
.
11.
Ortiz
M.
, and
Simo
J. C.
,
1986
, “
An Analysis of a New Class of Integration Algorithms for Elastoplastic Constitutive Relations
,”
International Journal for Numerical Methods in Engineering
, Vol.
23
, pp.
353
366
.
12.
Patel, M. R. and Finnie, I., 1969, The Deformation and Fracture of Rigid Cellular Plastics under Multiaxial Stress, Lawrence Livermore National Laboratories, Albuquerque, NM, SAND86-2927.
13.
Puso, M. A., and Govindjee, 1995, “A Phenomenological Constitutive Model for Polymeric Foam,” Mechanics of Plastics and Plastic Composites, MD-Vol. 68/AMD-Vol. 215, ASME, pp. 159–176.
14.
Ramon
O.
,
Mirahi
S.
, and
Miltz
J.
,
1990
, “
Mechanical Properties and Behavior of Open Cell Foams Used as Cushioning Materials
,”
Polymer Engineering and Science
, Vol.
30
, pp.
197
201
.
15.
Rush
K. C.
,
1969
, “
Load-Compression Behavior of Flexible Foams
,”
Journal of Applied Polymer Science
, Vol.
13
, pp.
2297
2311
.
16.
Shaw
M. C.
, and
Sata
T.
,
1966
, “
The Plastic Behavior of Cellular Materials
,”
International Journal of Mechanical Science
, Vol.
8
, pp.
469
469
.
17.
Schofield, A. and Worth, C. P., 1968, Critical State Soil Mechanics, McGraw-Hill, New York.
18.
Schreyer, H. L., Kulak, R. F., and Kramer, J. M., 1979 “Accurate Numerical Solutions for Elastic-Plastic Models,” ASME Journal of Pressure Vessel Technology, Vol. 101.
19.
Sherwood
J. A.
, and
Frost
C. C.
,
1992
, “
Constitutive Modeling and Simulation of Energy Absorbing Polyurethane Foam under Impact Loading
,”
Polymer Engineering and Science
, Vol.
32
, No.
16
, pp.
1138
1146
.
20.
Triantafillou
T. C.
,
Zhang
J.
,
Shercliff
T. L.
,
Gibson
L. J.
, and
Ashby
M. F.
,
1989
, “
Failure Surfaces for Cellular Materials under Multiaxial Loads-II. Comparisons of Models with Experiment
,”
International Journal of Mechanical Science
, Vol.
31
, No.
9
, pp.
665
678
.
21.
Triantafillou
T. C.
, and
Gibson
L. J.
,
1990
, “
Multiaxial Failure Criteria for Brittle Foams
,”
International Journal of Mechanical Science
, Vol.
32
, No.
6
, pp.
479
496
.
This content is only available via PDF.
You do not currently have access to this content.