The short time and cyclic behavior of filled rubbers used in vibration isolation in the frequency range 10−2 to 102 rad/s is examined. A form of the free-energy function consistent with the assumption of an additive stress decomposition is employed. A constitutive law for the inelastic part of the stress is provided, in the form of an integro-differential equation, which involves the fractional order derivative of the internal variable. It is assumed that the volumetric response of the material is elastic. The elasticity of rubber is modeled following classical models (e.g., Rivlin, Ogden), extended to include compressibility. Step-by-step integration of the constitutive law is performed. Simple shear experiments are used to assess the capability of the model to capture essential response characteristics, such as stiffness reduction under cyclic loading of increasing amplitude and the variation of dissipated energy with amplitude and frequency.

1.
Bagley
R. L.
, and
Torvik
P. J.
,
1983
, “
Fractional Calculus—A Different Approach to the Analysis of Viscoelastically Damped Structures
,”
AIAA Journal
, Vol.
21
, pp.
741
748
.
2.
Bataille
J.
, and
Kestin
J.
,
1975
, “
L’ Interpretation Physique de la Thermodynamique Rationelle
,”
J. de Mecanique
, Vol.
14
, pp.
365
384
.
3.
Caputo
M.
,
1967
, “
Linear Models of Dissipation whose Q is Almost Frequency Independent-II
,”
Geophys. J. R. Astr. Soc.
, Vol.
13
, pp.
529
539
.
4.
Caputo
M.
, and
Mainardi
F.
,
1971
, “
A New Dissipation Model Based on Memory Mechanism
,”
Pure and Applied Geophysics
, Vol.
91
, pp.
134
147
.
5.
Chadwick, P., 1976, Continuum Mechanics, Halsted Press, Wiley.
6.
Christensen, R. M., 1982, Theory of Viscoelasticity: An Introduction, Second Edition, Academic Press.
7.
Coleman
B. D.
,
1964
, “
Thermodynamics of Materials with Memory
,”
Arch. Rational Mech. Anal.
, Vol.
17
, pp.
1
46
.
8.
Coleman
B. D.
, and
Gurtin
M. E.
,
1967
, “
Thermodynamics with Internal State Variables
,”
The Journal of Chemical Physics
, Vol.
47
, pp.
597
613
.
9.
Erdelyi, A. ed., 1955, Higher Transcendental Functions, McGraw-Hill.
10.
Ferry, J. D., 1970, Viscoelastic Properties of Polymers, Wiley, Second Edition.
11.
Flory
P. J.
,
1961
, “
Thermodynamic Relations for High Elastic Materials
,”
Trans. of the Faraday Society
, Vol.
57
, pp.
829
838
.
12.
Flugge, W., 1975, Viscoelasticity, Springer-Verlag.
13.
Green
A. E.
, and
Rivlin
R. S.
,
1957
, “
The Mechanics of Nonlinear Materials with Memory; Part I
,”
Arch. Rational Mech. Anal.
, Vol.
1
, p.
1
1
.
14.
Green
A. E.
,
Rivlin
R. S.
, and
Spencer
A. J. M.
,
1959
, “
The Mechanics of Nonlinear Materials with Memory; Part II
,”
Arch. Rational Mech. Anal.
, Vol.
3
, p.
82
82
.
15.
Gregory
M. J.
,
Metherell
C.
, and
Smith
J. F.
,
1978
, “
The Effects of Carbon-Black Fillers on Viscoelastic Properties of Vulcanizates
,”
Plastics and Rubber: Materials and Applications
, Vol.
3
, pp.
37
40
.
16.
James
H. M.
, and
Guth
E.
,
1943
, “
Theory of the Elastic Properties of Rubber
,”
J. Chemical Physics
, Vol.
11
, pp.
455
481
.
17.
Kelly
J. M.
,
1986
, “
Aseismic Base Isolation: Review and Bibliography
,”
Soil Dynamics and Earthquake Engineering
, Vol.
5
, pp.
202
216
.
18.
Koeller
R. C.
,
1984
, “
Applications of Fractional Calculus to the Theory of Viscoelasticity
,”
ASME Journal of Applied Mechanics
, Vol.
51
, pp.
299
307
.
19.
Koh, C. G., and Kelly, J. M., 1985, “Fractional Derivative Representation of Seismic Response of Base Isolated Structures,” Report No. UCB/EERC 85-07, University of California, Berkeley.
20.
Lubliner
J.
,
1969
, “
On Fading Memory in Materials of Evolutionary Type
,”
Acta Mechanics
, Vol.
8
, pp.
75
81
.
21.
Lubliner
J.
,
1972
, “
On the Thermodynamic Foundations of Nonlinear Solid Mechanics
,”
Int. J. Nonlinear Mechanics
, Vol.
7
, pp.
237
254
.
22.
Lubliner
J.
,
1973
, “
On the Structure of the Rate Equations of Materials with Internal Variables
,”
Acta Mechanics
, Vol.
17
, pp.
100
119
.
23.
Lubliner
J.
,
1985
, “
A Model of Rubber Viscoelasticity
,”
Mechanics Research Communications
, Vol.
12
, pp.
93
99
.
24.
Mullins
L.
,
1969
, “
Softening of Rubber by Deformation
,”
Rubber Chemistry and Rheology
, Vol.
42
, pp.
339
362
.
25.
Noll
W.
,
1958
, “
A Mathematical Theory for the Mechanical Behavior of Continuous Media
,”
Arch. Rat. Mech. Analysis
, Vol.
70
, p.
197
197
.
26.
Ogden, R. W., 1982, “Elastic Deformations of Rubber-Like Solids,” J. Mechanics of Solids, The Rodney Hill 60th Anniversary Volume, G. Hopkins and M. J. Sewell, eds., Oxford, Pergamon Press, pp. 499–537.
27.
Ogden, R. W., 1984, Non-Linear Elastic Deformations, Halsted Press.
28.
Oldham, K. B., and Spanier, J., 1974, The Fractional Calculus, Academic Press.
29.
Papoulia, K. D., and Kelly, J. M., 1989, “Non-Linear Material Modeling of Isolation Bearings,” Proceedings, 2nd National Congress on Mechanics, Hellenic Society for Theoretical and Applied Mechanics, Athens, Greece.
30.
Papoulia, K. D. and Kelly, J. M., 1990, “Material Characterization of Elastomers Used in Earthquake Base Isolation,” Report No. UCB/EERC 90-18, University of California, Berkeley.
31.
Penn
R. W.
,
1970
, “
Volume Changes Accompanying the Extension of Rubber
,”
Trans. of the Society of Rheology
, Vol.
14
, pp.
509
517
.
32.
Rivlin
R. S.
,
1949
, “
A Note on the Torsion of an Incompressible Highly-Elastic Cylinder
,”
Proc. Cambridge Phil. Soc.
, Vol.
45
, pp.
485
487
.
33.
Rivlin
R. S.
, and
Smith
G. F.
,
1987
, “
A Note on Material Frame Indifference
,”
Int. J. Solids Structures
, Vol.
23
, pp.
1639
1643
.
34.
Serrin
J.
,
1979
, “
Conceptual Analysis of the Classical Second Laws of Thermodynamics
,”
Arch. Rat. Mech. Analysis
, Vol.
70
, pp.
355
371
.
35.
Simo
J. C.
,
1987
, “
On a Fully Three-Dimensional Finite-Strain Viscoelastic Damage Model: Formulation and Computational Aspects
,”
CMAME
, Vol.
60
, pp.
153
173
.
36.
Simo
J. C.
, and
Taylor
R. L.
,
1991
, “
Quasi-Incompressible Finite Elasticity in Principal Stretches. Continuum Basis and Numerical Algorithms
,”
CMAME
, Vol.
85
, pp.
273
310
.
37.
Taylor
R. L.
,
1973
, “
Inversion of Prony Series Characterization for Viscoelastic Stress Analysis
,”
IJNME
, Vol.
5
, pp.
499
502
.
38.
Treloar, L. R. G., 1975, The Physics of Rubber Elasticity, 3rd ed., Clarendon Press, Oxford.
39.
Truesdell, C., 1984, Rational Thermodynamics, Springer-Verlag.
This content is only available via PDF.
You do not currently have access to this content.