The essence of macroscopic quantities in solid mechanics can be grasped by expressing these quantities in terms of kinematic and mechanical quantities of atoms. In this paper, a method is proposed for obtaining the microscopic definitions of internal forces of continua such as stress, higher-order stresses and heat flux. Moreover, the relation between higher-order stress power and heat flux is discussed expressing the first law of thermodynamics with microscopic quantities in the mesodomain. Comparing heat flux with higher-order stress power, it is clarified that the divergence of heat flux is equivalent to the total of each order power due to higher-order stresses.

1.
Askar, A., 1985, Lattice Dynamical Foundations of Continuum Theories, World Scientific, Singapore.
2.
Bardenhangen
S.
, and
Triantafyllidis
N.
,
1994
, “
Derivation of Higher Order Gradient Continuum Theories in 2,3-D Non-Linear Elasticity from Periodic Lattice Models
,”
J. Mech. Phys. Solids
, Vol.
42
, pp.
111
139
.
3.
Ciccotti, G., Frenkel, D., and McDonald, I. R., 1987, Simulation of Liquids and Solids, North-Holland.
4.
Eringen
A. C.
, and
Suhubi
E. S.
,
1964
, “
Nonlinear Theory of Simple Micro-Elastic Solids
,”
Int. J. Eng. Sci.
, Vol.
2
, pp.
189
203
.
5.
Eringen
A. C.
,
1970
, “
Balance Laws of Micromorphic Mechanics
,”
Int. J. Engng. Sci.
, Vol.
8
, pp.
819
828
.
6.
Irving
J. H.
, and
Kirkwood
J. G.
,
1950
, “
The Statistical Mechanical Theory of Transport Processes
,”
J. Chem. Phys.
, Vol.
18
, No.
6
, pp.
817
829
.
7.
Kro¨ner, E., (ed.) 1968, Mechanics of Generalized Continua, IUTAM-Symp.
8.
Kunin, I. A., 1982, Elastic Media with Microstructure-I, Springer-Verlag, Berlin.
9.
Mindlin
R. D.
,
1964
,
Arch. Rat. Mech. Anal.
, Vol.
16
, pp.
51
78
.
10.
Mindlin, R. D., 1968, “Theories of Elastic Continua and Crystal Lattice Theories,” in Mechanics of Generalized Continua (E. Kro¨ner), ed., Spring-Verlag, Berlin, pp. 312–320.
11.
Mindlin
R. D.
, and
Tiersten
H. F.
,
1962
,
Arch. Rat. Mech. Anal
, Vol.
11
, pp.
415
448
.
12.
Takahashi
K.
,
1997
, “
Mesomechanics of Continua and Revised Field Equations
,”
JSME International Journal
, Series A, Vol.
40
, No.
2
, pp.
99
107
.
13.
Toupin
R. A.
,
1964
,
Arch. Rat. Mech. Anal.
, Vol.
17
, pp.
85
112
.
14.
Truesdell, C., and Noll, W., 1965, Encyclopedia of Physics, The Non-Linear Field Theories of Mechanics, Vol. 3, Part 3, Springer-Verlag, Berlin.
15.
Weiner, J. H., 1983, Statistical Mechanics of Elasticity, John Wiley & Sons, New York.
This content is only available via PDF.
You do not currently have access to this content.