Abstract

Concentrated suspensions of inclusions occur in asphalt and dental composite resins. Concentrated suspensions are also of use in achieving a combination of high stiffness and loss (the product E tan δ), desirable in damping layer and structural damping applications. For realizable particulate microstructures, analytical solutions for monodisperse inclusion morphologies such as spherical, random fibrous and platelet, are valid only in the case of a dilute concentration of inclusions. Finite element analyses were conducted of hierarchical particulate composites with high volume fractions of particles of irregular shape. For particle volume concentration 40 percent or less, the results are close to the Hashin-Shtrikman lower formula in a stiffness versus concentration plot and in a stiffness loss map. For larger concentration, stiffness is higher and E tan δ is lower. The irregular particle shape therefore enhances stiffness at a given concentration, and reduces damping layer performance.

1.
Delaware Composites Design Encyclopedia. Reviewing editors, L. A. Carlsson, J. W. Gillespie, Jr. Vol. 2, Micromechanical Materials Modeling. J. M. Whitney, R. L. McCullough, eds. Publisher: Technomic, Lancaster, PA, 1989.
2.
Lesueur
,
D.
,
Gerard
,
J. F.
,
Claudy
,
P.
,
Letoffe
,
M. M.
,
Planche
,
J. P.
, and
Martin
,
D.
,
1996
, “
A Structure Related Model to Describe Asphalt Linear Viscoelasticity
,”
J. Rheol.
,
40
, pp.
813
836
.
3.
Chen
,
C. P.
, and
Lakes
,
R. S.
,
1993
, “
Analysis of High Loss Viscoelastic Composites
,”
J. Mater. Sci.
,
28
, pp.
4299
4304
.
4.
Brodt
,
M.
, and
Lakes
,
R. S.
,
1995
, “
Composite Materials Which Exhibit High Stiffness and High Viscoelastic Damping
,”
J. Compos. Mater.
,
29
, pp.
1823
1833
.
5.
Hashin
,
Z.
, and
Shtrikman
,
S.
,
1963
, “
A Variational Approach to the Theory of the Elastic Behavior of Multiphase Materials
,”
J. Mech. Phys. Solids
,
11
, pp.
127
140
.
6.
Read
,
W. T.
,
1950
, “
Stress Analysis for Compressible Viscoelastic Materials
,”
J. Appl. Phys.
,
21
, pp.
671
674
.
7.
Gibiansky
,
L. V.
, and
Milton
,
G. W.
,
1993
, “
On the Effective Viscoelastic Moduli of Two Phase Media, I. Rigorous Bounds on the Complex Bulk Modulus
,”
Proc. R. Soc. London
,
440
, pp.
163
188
.
8.
Gibiansky
,
L. V.
and
Lakes
,
R. S.
,
1993
, “
Bounds on the Complex Bulk Modulus of a Two-Phase Viscoelastic Composite with Arbitrary Volume Fractions of the Components
,”
Mech. Mater.
,
16
, pp.
317
331
.
9.
Gibiansky
,
L. V.
, and
Lakes
,
R. S.
,
1997
, “
Bounds on the Complex Bulk and Shear Moduli of a Two-Dimensional Two-Phase Viscoelastic Composite
,”
Mech. Mater.
,
25
, pp.
79
95
.
10.
Zaghloul
,
S. M.
,
White
,
T. D.
, and
Kuczek
,
T.
,
1994
, “
Use of Three-Dimensional, Dynamic, Nonlinear Analysis to Develop Load Equivalency Factors for Composite Pavement
,”
Transp. Res. Rec.
,
1449
, pp.
199
208
.
11.
Uddin
,
W.
,
Zhang
,
D.
, and
Fernandez
,
F.
,
1994
, “
Finite Element Simulations of Pavement Discontinuities and Dynamic Load Response
,”
Transp. Res. Rec.
,
1448
, pp.
100
106
.
12.
Mamlouk
,
M. S.
, and
Mikhail
,
M. Y.
,
1998
, “
Concept for Mechanistic Based Performance Model for Flexible Pavements
,”
Transp. Res. Rec.
,
1629
, pp.
149
158
.
13.
Park, J. B., and Lakes, R. S., Biomaterials, Plenum, 1992.
14.
Cannon, M. L., 1988, “Composite Resins,” Encyclopedia of Medical Devices and Instrumentation, J. G. Webster, ed., Wiley, New York.
15.
Papadogiannis
,
Y.
,
Lakes
,
R. S.
,
Petrou-Americanos
,
A.
, and
Theothoridou-Pahini
,
S.
,
1993
, “
Temperature Dependence of the Dynamic Viscoelastic Behavior of Chemically and Light Activated Composite Resins
,”
Dent. Mater.
,
9
, pp.
118
122
.
16.
an Loan, C. F., 1997, Introduction to Scientific Computing, A Matrix Vector Approach Using MATLAB, Prentice Hall Inc.
17.
National Instruments, 1996, “Bridge VIEW and LabVIEW, IMAQ Vision for G Reference Manual,” Part No. 321379A-01, Oct.
18.
Kose, S., Guler, M., and Bahia, H. U., “Distribution of Strains within Asphalt Binders in HMA Using Imaging and Finite Element Techniques,” Presented at the Transportation Research Board 76th Annual Meeting, Jan., 2000, Washington, D. C. and accepted for publication in TRB Records for 2000.
19.
ABAQUS, 1998, A Finite Element Package, Version 5.8, Hibbitt, Karlsson & Sorensen.
20.
Christensen, R. M., 1979. Mechanics of Composite Materials, Wiley, New York.
21.
Whiting
,
R.
, and
Jacobsen
,
P. H.
,
1980
, “
Dynamic Mechanical Properties of Resin-Based Filling Materials
,”
J. Dent. Res.
,
59
, pp.
55
60
.
22.
Rosenstiel
,
S. F.
,
Land
,
M. F.
, and
Crispin
,
B. J.
,
1998
, “
Dental Luting Agents; a Review of the Current Literature
,”
J. Prosthet. Dent.
,
80
, pp.
280
301
.
23.
Braem
,
M.
,
Finger
,
W.
,
Van Doren
,
V. E.
,
Lambrechts
,
V. E.
, and
Vanherle
,
G.
,
1989
, “
Mechanical Properties and Filler Fraction of Dental Composites
,”
Dent. Mater.
,
5
, pp.
346
349
.
24.
Papadogiannis
,
Y.
,
Boyer
,
D. B.
, and
Lakes
,
R. S.
,
1984
, “
Creep of Conventional and Microfilled Dental Composites
,”
J. Biomed. Mater. Res.
,
18
, pp.
15
24
.
25.
Lakes, R. S., 1998, Viscoelastic Solids, CRC Press, Boca Raton, FL.
You do not currently have access to this content.