Abstract

A phenomenological model to predict creep rupture times, based on material damage due to void growth and coalescence is presented. The model employs the Gurson-Tvergaard yield function together with the Norton-Baily power creep law. Rupture occurs at the end of a tertiary creep stage when the load-carrying capacity of the test-piece vanishes. Formulations for both uniaxial and triaxial conditions are given. Comparisons among the predictions of the present model and experiments for a vast number of data points indicate satisfactory agreement. A relation incorporating steady-state creep rate, rupture strain and rupture time is suggested. Furthermore acceptable correlation of the creep-rupture strength and creep strength to cause a specified creep strain is obtained.

1.
Hoff
,
N. J.
,
1953
, “
Necking and Rupture of Rods under Tensile Loads
,”
ASME J. Appl. Mech.
,
20
, p.
105
105
.
2.
Kachanov
,
L. M.
,
1958
, “
Time of the Fracture Process under Creep Conditions,” (in Russian)
Izv. Akad. Nauk SSSR
, No.
8
, p.
28
28
.
3.
Hancock
,
J. W.
,
1976
, “
Creep Cavitation without a Vacancy Flux
,”
Metal Science
, ,
10
, p.
319
319
.
4.
Beere
,
W.
, and
Speight
,
M. V.
,
1978
, “
Creep Cavitation by Vacancy Diffusion in Plastically Deforming Solid
,”
Metal Science
, ,
4
, p.
172
172
.
5.
Boyle, J. T., and Spence, J., 1983, Stress Analysis for Creep, Butterworths.
6.
Needleman
,
A.
, and
Rice
,
J. R.
,
1980
, “
Plastic Creep Flow Effects in the Diffuse Cavitation of Grain Boundaries
,”
Acta Metall.
,
28
, p.
1315
1315
.
7.
Cocks
,
A. C. F.
, and
Ashby
,
M. F.
,
1982
, “
Creep Fracture by Coupled Power-Law Creep and Diffusion Under Multiaxial Stress
,”
Metal Science
, ,
16
, p.
465
465
.
8.
Tvergaard
,
V.
,
1982
, “
On Localization in Ductile Materials Containing Spherical Voids
,”
Int. J. Fract.
,
18
, p.
237
237
.
9.
Ragab
,
A. R.
, and
Saleh
,
Ch. A. R.
,
1999
, “
Evaluation of Constitutive Models for Voided Solids
,”
Int. J. Plast.
,
15
, p.
1041
1041
.
10.
Bridgman, P. W., 1952, Studies in Large Plastic Flow and Fracture, McGraw-Hill, N.Y.
11.
Tegart, W. J. M., 1966, Elements of Mechanical Metallurgy, Macmillan, N.Y.
12.
Ragab
,
A. R.
,
2000
, “
Prediction of Ductile Fracture in Axisymmetric Tension by Void Coalescence
,”
Int. J. Fract.
,
105
, p.
391
391
.
13.
Needleman
,
A.
,
1972
, “
A Numerical Study of Necking in Circular Cylindrical Bars
,”
J. Mech. Phys. Solids
,
20
, p.
111
111
.
14.
Norris
,
D. M.
,
Moran
,
B.
, Jr.
,
Scudder
,
J. K.
, and
Quinonse
,
D. F.
,
1978
, “
A Computer Simulation of the Tension Test
,”
J. Mech. Phys. Solids
,
26
, p.
1
1
.
15.
Ragab
,
A. R.
, and
Saleh
,
Ch. A. R.
,
1999
, “
Effect of Void Growth on Predicting Forming Limit Strains for Planar Isotropic Sheet Metals
,”
Mech. Mater.
,
32
, p.
71
71
.
16.
Odqvist, F. K. G., 1966, Mathematical Theory of Creep and Creep Rupture, Oxford-Clarendon Press.
17.
Wiggin Alloys Ltd, The Nimonic Alloys-Design Data.
18.
Townley, C. H. A., et al., 1991, “High Temperature Design Data for Ferritic Pressure Vessel Steels,” Creep of Steels Working Party (CSWP), Inst. Mech. Engrs., J. Mech. Enging., London.
19.
McClintock
,
F. A.
,
1968
, “
A Criterion for Ductile Enlargement of Voids in Triaxial Stress Fields
,”
ASME J. Appl. Mech.
,
4
, p.
363
363
.
20.
Melander
,
A.
,
1983
, “
A New Model of The Forming Limit Diagram Applied to Experiments on Four Copper-Brass Alloys
,”
Mater. Sci. Eng.
,
58
, p.
63
63
.
21.
Thomson
,
R. D.
, and
Hancock
,
J. W.
,
1984
, “
Ductile failure by Void Nucleation, Growth and Coalescence
,”
Int. J. Fract.
,
26
, p.
99
99
.
22.
Parmar
,
A.
, and
Mellor
,
P. B.
,
1980
, “
Growth of Voids in Biaxial Stress Fields
,”
Int. J. Mech. Sci.
,
22
, p.
133
133
.
23.
Bampton
,
C. C.
, and
Raj
,
R.
,
1982
, “
Influence of Hydrostatic Pressure and multiaxial Straining on Cavitation in Superplastic Aluminum Alloys
,”
Acta Metall.
,
30
, p.
2035
2035
.
24.
Juvinall, R. C., 1967, Stress, Strain and Strength, McGraw-Hill, N.Y. p. 416.
25.
Howard, E. B., ed., 1997, “Atlas of Creep and Stress-Rupture Curves,” ASM. Ant, Metals Park, Ohio.
26.
Forest, C., Monkman, F. C., and Grant, N. J., 1956, “An Empirical Relationship Between Rupture Life and Minimum Creep Rate in Creep-Rupture Tests,” Proc. ASTM, Vol. 56, p. 593–620.
27.
Dobes
,
F.
, and
Milicka
,
K.
,
1976
, “
The Relation Between Minimum Creep Rate and Time to Fracture
,”
Met. Sci.
,
10
, p.
382
382
.
28.
Richards
,
E. G.
,
1968
, “
Influence of Specimen Size and Grain Size on the Creep- Rupture Strength of Some Nickle-Base High Temperature Alloys
,”
J. Inst. Met.
,
98
, p.
365
365
.
29.
Goldhoff
,
R. M.
, and
Gill
,
R. F.
,
1972
, “
A Method for Predicting Creep Data for Commercial Alloys on a Correlation Between Creep Strength and Rupture Strength
,”
ASME J. Basic Eng.
,
94
, p.
1
1
.
30.
Moon, D. P., Simon, R. C., and Favor, R. J., 1968, “The Elevated-Temperature Properties of Selected Superalloys,” ASTM, p. 335.
31.
Simmons, W. F., and Cross, H. C., 1955, “Elevated-Temperature Properties of Carbon Steels,” ASTM Special Technical Publication, No. 180, p. 5.
32.
Hashem
,
A. M.
,
1997
, “
Influence of the Heat Treatment on Creep Behavior of Nickel Aluminide with Boron
,”
Adv. Perform. Mater
,
4
, p.
9
9
.
33.
Data sheet from International Nickle Co., Inc., Development and Research Dept., 76 Wall St., N.Y. 10005, Undated. (See Goldhoff and Gill; 1972 29).
You do not currently have access to this content.