A recently developed procedure for modeling the deformation of single and multi-wall carbon nanotubes [13,14] is applied to nanotube buckling and post-buckling under axial compression. Critical features of the model, which is grounded in elastic shell theory, include identification of (a) an appropriate elastic modulus and thickness pair matching both the wall stretching and bending resistances of the single atomic layer nanotube walls, and (b) a sufficiently stiff interwall van der Waals potential to preserve interwall spacing in locally buckled MWNTs, as is experimentally observed. The first issue is illustrated by parametric buckling studies on a SWNT and comparisons to a corresponding MD simulation from the literature; results clearly indicating the inadequacy of arbitrarily assigning the shell thickness to be the equilibrium spacing of graphite planes. Details of the evolution of local buckling patterns in a nine-walled CNT are interpreted based on a complex interplay of local shell buckling and evolving interwall pressure distributions. The transition in local buckling wavelengths observed with increasing post-buckling deformation is driven by the lower energy of a longer-wavelength, multiwall deformation pattern, compared to the shorter initial wavelength set by local buckling in the outermost shell. This transition, however, is contingent on adopting a van der Waals interaction sufficiently stiff to preserve interlayer spacing in the post-buckled configuration.

1.
Poncharal
,
P.
,
Wang
,
Z. L.
,
Ugarte
,
D.
, and
de Heer
,
W. A.
,
1999
, “
Electrostatic Deflections and Electromechanical Resonances of Carbon Nanotubes
,”
Science
,
283
(
5407
), pp.
1513
1516
.
2.
Wang
,
Z. L.
,
Poncharal
,
P.
, and
De Heer
,
W. A.
,
2000
, “
Measuring Physical and Mechanical Properties of Individual Carbon Nanotubes by In-Situ TEM
,”
J. Phys. Chem. Solids
,
61
, pp.
1025
1030
.
3.
Yu
,
M. F.
,
Lourie
,
O.
,
Dyer
,
M. J.
,
Moloni
,
K.
,
Kelly
,
T. F.
, and
Ruoff
,
R. S.
,
2000
, “
Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load
,”
Science
,
287
(
5453
), pp.
637
640
.
4.
Wong
,
E. W.
,
Sheehan
,
P. E.
, and
Lieber
,
C. M.
,
1997
, “
Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes and Carbon Nanotubes
,”
Science
,
277
, pp.
1971
1973
.
5.
Qi
,
H. J.
,
Teo
,
K. B. K.
,
Lau
,
K.
,
Boyce
,
M. C.
,
Milne
,
W. I.
,
Robertson
,
J.
, and
Gleason
,
K. K.
,
2003
, “
Determination of Mechanical Properties of Carbon Nanotubes and Vertical Aligned Carbon Nanotube Forests Using Nanoindentation
,”
J. Mech. Phys. Solids
,
51
, pp.
2213
2237
.
6.
Robertson
,
D. H.
,
Brenner
,
D. W.
, and
Mintmire
,
J. W.
,
1992
, “
Energetics of Nanoscale Graphitic Tubules
,”
Phys. Rev. B
,
45
(
21
), pp.
12592
12595
.
7.
Zhou
,
X.
,
Zhou
,
J. J.
, and
Ou-Yang
,
Z. C.
,
2000
, “
Strain Energy and Young’s Modulus of Single-Wall Carbon Nanotubes Calculated From Electronic Energy-Band Theory
,”
Phys. Rev. B
,
62
(
20
), pp.
13692
13696
.
8.
Sanchez-Portal
,
D.
,
Artacho
,
E.
,
Soler
,
J.
,
Rubio
,
A.
, and
Ordejon
,
P.
,
1999
, “
Ab Initio Structural, Elastic, and Vibrational Properties of Carbon Nanotubes
,”
Phys. Rev. B
,
59
(
19
), pp.
12678
12688
.
9.
Yakobson
,
B.
,
Brabec
,
C.
, and
Bernholc
,
J.
,
1996
, “
Nanomechanics of Carbon Tubes: Instabilities Beyond the Linear Response
,”
Phys. Rev. Lett.
,
76
(
14
), pp.
2511
2514
.
10.
Kelly, B., 1981, Physics of Graphite, Applied Science Publishers, London.
11.
Tu
,
Z.
, and
Ou-Yang
,
Z.
,
2002
, “
Single-Walled and Multiwalled Carbon Nanotubes Viewed as Elastic Tubes With the Effective Young’s Moduli Dependent on Layer Number
,”
Phys. Rev. B
,
65
, p.
233407
233407
.
12.
Kundin
,
K. N.
,
Scuseria
,
G. E.
, and
Yakobson
,
B. I.
,
2001
, “
C2F, BN, and C Nanoshell Elasticity From ab initio Computations
,”
Phys. Rev. B
,
64
, p.
235406
235406
.
13.
Pantano
,
A.
,
Parks
,
D. M.
, and
Boyce
,
M. C.
, “
Mechanics of Deformation of Single and Multiwall Carbon Nanotubes
,”
J. Mech. Phys. Solids
,
52
(
4
), pp.
789
821
.
14.
Pantano
,
A.
,
Boyce
,
M. C.
, and
Parks
,
D. M.
,
2003
, “
Nonlinear Structural Mechanics Based Modeling of Carbon Nanotube Deformation
,”
Phys. Rev. Lett.
,
91
(
14
), p.
145504
145504
.
15.
Bower
,
C.
,
Rosen
,
R.
,
Jin
,
L.
,
Han
,
J.
, and
Zhou
,
O.
,
1999
, “
Deformation of Carbon Nanotubes in Nanotube-Polymer Composites
,”
Appl. Phys. Lett.
,
74
(
22
), pp.
3317
3319
.
16.
Lourie
,
O.
,
Cox
,
D. M.
, and
Wagner
,
H. D.
,
1998
, “
Buckling and Collapse of Embedded Carbon Nanotubes
,”
Phys. Rev. Lett.
,
81
(
8
), pp.
1638
1641
.
17.
Cumings
,
J.
, and
Zettl
,
A.
,
2000
, “
Low-Friction Nanoscale Linear Bearing Realized From Multiwall Carbon Nanotubes
,”
Science
,
289
(
5479
), pp.
602
604
.
18.
Qian
,
D.
,
Liu
,
W. K.
,
Subramoney
,
S.
, and
Ruoff
,
R. S.
,
2003
, “
Effect of Interlayer Potential on Mechanical Deformation of Multiwalled Carbon Nanotubes
,”
J. Nanosci. Nanotechnol.
,
3
(
1/2
), pp.
185
191
.
19.
Arroyo
,
M.
, and
Belytschko
,
T.
,
2003
, “
Nonlinear Mechanical Response and Rippling of Thick Multi-Walled Carbon Nanotubes
,”
Phys. Rev. Lett.
,
91
, p.
215505
215505
.
20.
Love, A. E. H., 1994, A Treatise on the Mathematical Theory of Elasticity, 4th ed., Dover, New York.
21.
Novozhilov, V. V., 1959, The Theory of Thin Elastic Shells, Noordhoff, Groningen.
22.
Zhao
,
Y. X.
, and
Spain
,
I. L.
,
1989
, “
X-Ray-Diffraction Data for Graphite to 20 GPa
,”
Phys. Rev. B
,
40
(
2
), pp.
993
997
.
23.
Girifalco
,
L. A.
, and
Lad
,
R. A.
,
1956
, “
Energy of Cohesion, Compressibility and the Potential Energy Functions of the Graphite System
,”
J. Chem. Phys.
,
25
(
4
), pp.
693
697
.
24.
Ni
,
B.
,
Sinnott
,
S. B.
,
Mikulski
,
P. T.
, and
Harrison
,
J. A.
,
2004
, “
Compression of Carbon Nanotube Filled With C60, CH4, or Ne: Prediction From Molecular Dynamics Simulations
,”
Phys. Rev. Lett.
,
88
(
20
), p.
205505
205505
.
25.
Timoshenko, S., 1936, Theory of Elastic Stability, McGraw-Hill, New York.
You do not currently have access to this content.