The anomalous behavior of microstructurally “short” cracks that can control fatigue life at very high cycles can be attributed to the local conditions around these cracks, since the length scale involved requires the consideration of anisotropic material behavior and the effect of changes in grain orientation as the crack grows. The effect of local crystallography was studied in multicrystalline Compact-Tension (CT) specimens of pure nickel and a cast Ni-based superalloy. Orientation Imaging Microscopy (OIM) was used to map the crystallography of the grains ahead of the notch. A standard fatigue crack growth test was then carried out to characterize the crack path in relation to the grain orientations. Two extreme cases were identified: at one end cracks grew with small deviations through all the grains ahead of it, whereas at the other end large deflections from a path perpendicular to the applied load were observed. Intergranular cracks were found to prefer high angle boundaries, whereas transgranular cracks had a tendency to nucleate and display stage I growth along slip traces of systems with high Schmid factors, as determined by the uniaxial conditions expected at the notch tips. In addition, crack path tortuosity was more pronounced in grains with loading axes close to 〈111〉. Finally, the influence of changes on slip geometry as cracks moved across grain boundaries is also discussed.

1.
Davidson
,
D. L.
, and
Chan
,
K. S.
,
1989
, “
The Crystallography of Fatigue Crack Initiation in Coarse-Grained Astroloy at 20°C
,”
Acta Metall.
,
37
, pp.
1089
1097
.
2.
Gopalan
,
P.
, and
Margolin
,
H.
,
1991
, “
Elastic Stresses, Twin Boundaries and Fatigue Cracking
,”
Mater. Sci. Eng., A
,
142
, pp.
11
23
.
3.
Lawson
,
L.
,
Chen
,
E. Y.
, and
Meshii
,
M.
,
1999
, “
Near-Threshold Fatigue: A Review
,”
Int. J. Fatigue
,
21
, pp.
S15–S34
S15–S34
.
4.
Liu
,
W.
,
Bayerlein
,
M.
,
Mughrabi
,
H.
,
Day
,
A.
, and
Quested
,
P. N.
,
1992
, “
Crystallographic Features of Intergranular Crack Initiation in Fatigued Copper Polycrystals
,”
Acta Metall. Mater.
,
40
, pp.
1763
1771
.
5.
Neumann, P., and To¨nnessen, A., 1988, Crack Initiation at Grain Boundaries in FCC Materials, in Strength of Metals and Alloys, edited by P. O. Kettunen, T. K. Lepisto¨, and M. E. Lehtonen, Pergamon Press, Oxford, pp. 743–748.
6.
Ravichandran
,
K. S.
, and
Li
,
X.-D.
,
2000
, “
Fracture Mechanical Character of Small Cracks in Polycrystalline Materials: Concept and Numerical K Calculations
,”
Acta Mater.
,
48
, pp.
525
540
.
7.
Lukas
,
P.
, and
Kunz
,
L.
,
1984
, “
Threshold Stress Intensity and Dislocation Structures Surrounding Fatigue Cracks in Polycrystalline Copper
,”
Mater. Sci. Eng.
,
62
, pp.
149
157
.
8.
Burmeister
,
H.-J.
, and
Richter
,
R.
,
1997
, “
Investigations on the Origin of Grain Boundary Cracks in Fatigued FCC Metals
,”
Acta Mater.
,
45
, pp.
709
714
.
9.
Richter
,
R.
, and
Burmeister
,
H.-J.
,
1997
, “
Effects of Grain Boundary Cracks Properties on Intergranular Cracking in Fatigued FCC Metals
,”
Acta Mater.
,
45
, pp.
715
725
.
10.
Blockwitz
,
C.
,
Richter
,
R.
,
Tirschler
,
W.
, and
Obrtlik
,
K.
,
1997
, “
The Effect of Local Textures on Microcrack Propagation in Fatigue fcc Metals
,”
Mater. Sci. Eng., A
,
234–236
, pp.
563
566
.
11.
Gourgues
,
A. F.
,
2002
, “
Electron Backscatter Diffraction and Cracking
,”
Mater. Sci. Technol.
,
18
, pp.
119
133
.
12.
Sutton, A. P., and Ballufi, R. W., 1995, Interfaces in Crystalline Materials, Oxford University Press, New York.
13.
Peralta
,
P.
,
Llanes
,
L.
,
Bassani
,
J.
, and
Laird
,
C.
,
1994
, “
Deformation From Twin-Boundary Stresses and the Role of Texture: Application to Fatigue
,”
Philos. Mag. A
,
70
, pp.
219
232
.
14.
Llanes
,
L.
, and
Laird
,
C.
,
1992
, “
The Role of Annealing Twin Boundaries in the Cyclic Deformation of FCC Materials
,”
Mater. Sci. Eng., A
,
157
, pp.
21
27
.
15.
Peralta
,
P.
, and
Laird
,
C.
,
1997
, “
The Role of Strain Compatibility in the Cyclic Deformation of Copper Bicrystals
,”
Acta Mater.
,
45
, pp.
3029
3046
.
16.
Kim
,
W. H.
, and
Laird
,
C.
,
1978
, “
Crack Nucleation and Stage I Propagation in High Strain Fatigue-II. Mechanism
,”
Acta Metall.
,
26
, pp.
789
799
.
17.
Christ
,
H.-J.
,
1989
, “
On the Orientation of Cyclic-Slip-Induced Intergranular Fatigue Cracks in Face-Centered Cubic Materials
,”
Mater. Sci. Eng., A
,
117
, pp.
L25–L29
L25–L29
.
18.
Figueroa
,
J. C.
, and
Laird
,
C.
,
1983
, “
Crack Initiation and Mechanisms in Copper Polycrystals Cycled Under Constant Strain Amplitudes and in Step Tests
,”
Mater. Sci. Eng.
,
60
, pp.
45
58
.
19.
Repetto
,
E. A.
, and
Ortiz
,
M.
,
1997
, “
A Micromechanical Model of Cyclic Deformation and Fatigue Crack Initiation in fcc Single Crystals
,”
Acta Mater.
,
45
, pp.
2577
2595
.
20.
Ma
,
B.-T.
, and
Laird
,
C.
,
1989
, “
Overview of Fatigue Behavior in Copper Single Crystals-III. Interpretation of Crack Growth Kinetics and a New Approach to Predict Fatigue Life Based on Crack Population Density in Specimens Cycled at Constant Strain Amplitude
,”
Acta Metall.
,
37
, pp.
349
355
.
21.
Ma
,
B.-T.
, and
Laird
,
C.
,
1989
, “
Overview of Fatigue Behavior in Copper Single Crystals-I. Surface Morphology and Stage I Crack Initiation Sites for Tests at Constant Strain Amplitude
,”
Acta Metall.
,
37
, pp.
325
336
.
22.
Jameel
,
M. A.
,
Peralta
,
P.
, and
Laird
,
C.
,
2003
, “
Initiation and Propagation of Stage-I Cracks in Copper Single Crystals Under Load Control
,”
Mater. Sci. Eng., A
,
342
, pp.
279
286
.
23.
Laird, C., 1967, The Influence of Metallurgical Structure on the Mechanisms of Fatigue Crack Propagation, in Fatigue Crack Propagation, ASTM STP 415, ASTM, Editor, American Society of Testing and Materials. Philadelphia, pp. 131–180.
24.
Neumann
,
P.
,
1974
, “
New Experiments Concerning the Slip Processes at Propagating Fatigue Cracks-I
,”
Acta Metall.
,
22
, pp.
1155
1165
.
25.
Garrett
,
G. G.
, and
Knott
,
J. F.
,
1975
, “
Crystallographic Fatigue Crack Growth in Aluminum Alloys
,”
Acta Metall.
,
23
, pp.
841
848
.
26.
Higo
,
Y.
,
Pickard
,
A. C.
, and
Knott
,
J. F.
,
1981
, “
Effects of Grain Size and Stacking Fault Energy on Fatigue Crack Propagation Thresholds in Cu-Al Aluminum Alloys
,”
Metal Sci.
,
15
, pp.
233
240
.
27.
Bowles
,
C. Q.
, and
Broek
,
D.
,
1972
, “
On the Formation of Fatigue Striations
,”
Int. J. Fract. Mech.
,
8
, pp.
75
85
.
28.
Laird, C., 1962, Ph.D. thesis, University of Cambridge.
29.
Neumann
,
P.
,
1974
, “
The Geometry of Slip Processes at a Propagating Fatigue Crack-II
,”
Acta Metall.
,
22
, pp.
1167
1178
.
30.
Peralta
,
P.
, and
Laird
,
C.
,
1997
, “
Fatigue Fracture at Bicrystal Interfaces: Experiment and Theory
,”
Acta Mater.
,
46
, pp.
2001
2020
.
31.
Suresh, S., 1998, Fatigue of Materials, 2nd ed., Cambridge University Press, Cambridge.
32.
Wang
,
P.
,
Bhate
,
N.
,
Chan
,
K. S.
, and
Kumar
,
K. S.
,
2003
, “
Colony Boundary Resistance to Crack Propagation in Lamellar Ti-46Al
,”
Acta Mater.
,
51
, pp.
1573
1591
.
33.
Mercer
,
C.
,
Shademan
,
S.
, and
Soboyejo
,
W. O.
,
2003
, “
An Investigation of the Micromechanisms of Fatigue Crack Growth in Structural Gas Turbine Engine Alloys
,”
J. Mater. Sci.
,
38
, pp.
291
305
.
34.
Li
,
C.
,
Zhang
,
P.
, and
Zhang
,
T.
,
1994
, “
On Crystallographic Crack Transfer Across Interfaces in Four Types of Aluminum Bicrystal
,”
Mater. Sci. Eng., A
,
183
, pp.
23
30
.
35.
Peralta
,
P.
,
Schober
,
A.
, and
Laird
,
C.
,
1993
, “
Elastic Stresses in Anisotropic Bicrystals
,”
Mater. Sci. Eng., A
,
169
, pp.
43
51
.
36.
Reed
,
P. A. S.
,
Wu
,
X. D.
, and
Sinclair
,
I.
,
2000
, “
Fatigue Crack Prediction in UDIMET 720 Nickel-Based Alloy Single Crystals
,”
Metall. Mater. Trans. A
,
31
, pp.
109
123
.
37.
Peralta
,
P.
,
Ramamurty
,
U.
,
Suresh
,
S.
,
Campbell
,
G. H.
,
King
,
W. E.
, and
Mitchell
,
T. E.
,
2001
, “
Effects of Elastic Anisotropy and Slip Geometry on Interfacial Fatigue Fracture in Copper–Sapphire Bicrystals
,”
Mater. Sci. Eng., A
,
314
, pp.
55
66
.
You do not currently have access to this content.