In order to characterize the metal behavior at strain, strain rate, and temperature range encountered in metal forming processes, the rheological compressive test is well adapted and has been often used. Nevertheless, this experimental test is more complicated to realize than the extension one and requires some particular considerations owing to the friction condition occurring between the specimen and the dies. This paper deals with a new specimen shape proposed to realize both static and dynamic compression tests. The independence of the material parameters to die friction is highlighted by means of a pseudo-experimental validation. The proposed specimen shape is validated by compression tests carried out on a 50CD4 steel (norm EN 10 083). The choice of the mathematical form of the constitutive law allowing to characterize its behavior at strains, strain rates, and temperatures corresponding to an extrusion application is then discussed. To replicate more accurately the nonuniformity of the different fields in the specimen, a classical inverse procedure consisting in coupling a finite element model of the compression test with an optimization module is used to determined the rheological parameters.

1.
Meyer
,
L. W.
,
Halle
,
T.
,
Herzig
,
N.
,
Krüger
,
L.
, and
Razorenov
,
S. V.
, 2006, “
Experimental Investigations and Modelling of Strain Rate and Temperature Effects on the Flow Behavior of 1045 Steel
,”
J. Phys. IV
1155-4339,
134
, pp.
75
80
.
2.
Tanimura
,
S.
,
Hayashi
,
H.
, and
Yamamoto
,
T.
, 2006, “
A Practical Constitutive Model Covering a Wide Range of Strain Rates and a Large Region of Strain
,”
J. Phys. IV
1155-4339,
134
, pp.
55
61
.
3.
Diot
,
S.
, 2003, “
Caractérisation Expérimentale et Numérique du Comportement Dynamique des Matériaux
,” Ph.D. thesis, Institut National des Sciences Appliquées de Rennes, France.
4.
Kajberg
,
J.
,
Sundin
,
K. G.
,
Melin
,
L. G.
, and
Stahle
,
P.
, 2004, “
High Strain-Rate Tensile Testing and Viscoplastic Parameter Identification Using Microscopic High-Speed Photography
,”
Int. J. Plast.
0749-6419,
20
, pp.
561
575
.
5.
Diot
,
S.
,
Gavrus
,
A.
,
Guines
,
D.
, and
Ragneau
,
E.
, 2002, “
Identification of a Forging Steel Behavior From Dynamic Compression Test
,”
Proceedings of the 15th ASCE Engineering Mechanics Conference, EM2002
,
Columbia University
,
New York, NY
, Jun. 2–5.
6.
François
,
D.
, 2001,
Essais Mécaniques et Lois de Comportement
,
Editions Hermès Sciences
,
Paris
.
7.
Van Rooyen
,
G. T.
, and
Backoffen
,
W. A.
, 1960, “
A Study of Interface Friction in Plastic Compression
,”
Int. J. Mech. Sci.
0020-7403,
1
, pp.
1
27
.
8.
Oh
,
S. I.
, and
Kobayashi
,
S.
, 1975, “
An approximate method for a three dimensional analysis of rolling
,”
Int. J. Mech. Sci.
0020-7403,
17
(
4
), pp.
293
305
.
9.
Gelin
,
J. C.
,
Oudin
,
J.
, and
Ravalard
,
Y.
, 1981, “
Determination of the Flow Stress-Strain Curves for Metals From Axisymmetric Upsetting
,”
J. Mech. Work. Technol.
0378-3804,
6
, pp.
297
308
.
10.
Kunogi
,
M.
, 1956, “
A New Method of Cold Extrusion
,”
J. Sci. Res. Inst. (Tokyo)
,
50
, pp.
215
246
.
11.
Male
,
A. T.
, and
Cockcroft
,
M. G.
, 1964, “
Coefficient of Friction Under Condition of Bulk Plastic Deformation
,”
J. Inst. Met.
0020-2975,
93
, pp.
38
46
.
12.
Avitzur
,
B.
, 1964, “
Forging of Hollow Discs
,”
Isr. J. Technol.
0021-2202,
2
(
3
), pp.
295
304
.
13.
Gorham
,
D. A.
,
Pope
,
P. H.
, and
Cox
,
O.
, 1984, “
Sources of Error in Very High Strain Rate Compression Tests, Mechanical Properties at High Rates of Strain
,”
Proceedings of the Third Conference on the Mechanical Properties of Materials at High Rates of Strain
, Oxford, Apr. 9–12,
Institute of Physics
,
UK
,
Conference series
Vol.
70
, pp.
151
158
.
14.
Walley
,
S. M.
,
Church
,
P. D.
,
Furth
,
M.
, and
Field
,
J. E.
, 1997, “
A High-Speed Photographic Study of the Rapid Deformation of Metal Annuli: Comparison of Theory With Experiment
,”
J. Phys. IV
1155-4339
7
(
C3
), pp.
317
322
.
15.
Male
,
A. T.
, and
De Pierre
,
V.
, 1970, “
The Validity of Mathematical Solutions for Determining Friction From the Ring Compression Test
,”
ASME J. Lubr. Technol.
0022-2305,
39
, pp.
389
397
.
16.
Rao
,
K. P.
, and
Sivaram
,
K.
, 1993, “
A Review of Ring-Compression Testing and Applicability of the Calibration Curves
,”
J. Mater. Process. Technol.
0924-0136,
37
,
295
318
.
17.
Liu
,
J. Y.
, 1972, “
An Analysis of Deformation Characteristics and Interfacial Friction Conditions in Simple Upsetting of Rings
,”
ASME J. Eng. Ind.
0022-0817,
94
(
4
), pp.
1149
1156
.
18.
Lee
,
C. H.
, and
Altan
,
T.
, 1972, “
Influence of Flow Stress and Friction upon Metal Flow in Upset Forging of Rings and Cylinders
,”
ASME J. Eng. Ind.
0022-0817,
94
(
3
),
775
782
.
19.
Hwu
,
Y.
,
Hsu
,
C.
, and
Wang
,
F.
, 1993, “
Measurement of Friction and the Flow Stress of Steels at Room and Elevated Temperatures by Ring-Compression Tests
,”
J. Mater. Process. Technol.
0924-0136,
37
, pp.
319
335
.
20.
Kopp
,
R.
,
Luce
,
R.
,
Leisten
,
B.
,
Wolskz
,
M.
,
Tschirnich
,
M.
,
Rehrmann
,
T.
, and
Volles
,
R.
, 2001, “
Flow Stress Measuring by Use of Cylindrical Compression Test and Special Application to Metal Forming Processes
,”
Steel Res.
0177-4832,
72
(
10
), pp.
394
401
.
21.
Kopp
,
R.
,
Heuben
,
J. M. M.
,
Philipp
,
F. D.
, and
Karhausen
,
K.
, 1993, “
Improvement of Accuracy in Determining Flow Stress in Hot Upsetting Tests
,”
Steel Res.
0177-4832,
64
(
8∕9
), pp.
377
384
.
22.
Mataya
,
M. C.
, and
Sackschewsky
,
V. E.
, 1994, “
Effect of Internal Heating During Hot Compression on the Stress-Strain Behavior of Alloy 304L
,”
Metall. Mater. Trans. A
1073-5623,
25A
, pp.
2737
2752
.
23.
Parteder
,
E.
, and
Bünten
,
R.
, 1998, “
Determination of Flow Curves by Means of a Compression Test Under Sticking Friction Conditions Using an Iterative Finite-Element Procedure
,”
J. Mater. Process. Technol.
0924-0136,
74
, pp.
227
233
.
24.
Gavrus
,
A.
, 1996, “
Identification Automatique des Paramètres Rhéologiques par Analyse Inverse
,” Ph.D. thesis, Ecole Nationale Supérieure des Mines de Paris, CEMEF, Sofia Antipolis, France.
25.
Dal Negro
,
T.
,
D’Alvise
,
L.
,
Chastel
,
Y.
, and
Massoni
,
E.
, 2001, “
Inverse Technique for Automatic Identification of Rheological Parameters in Combined Tension-Torsion and Compression
,”
Proceedings of ESAFORM 2001
, Liège, pp.
419
422
.
26.
Szyndler
,
D.
,
Pietrzyk
,
M.
, and
Kusiak
,
R.
, 2001, “
Estimation of Rheological and Friction Parameters in Hot Forming Processes as Inverse Problem
,”
Proceedings of ESAFORM 2001
, Liège pp.
191
194
.
27.
Szeliga
,
D.
,
Matuszyk
,
P.
,
Kusiak
,
R.
, and
Pietrzyk
,
M.
, 2002, “
Identification of Rheological Parameters on the Basis of Various Types of Plastometric Tests
,”
J. Mater. Process. Technol.
0924-0136,
125–126
pp.
150
154
.
28.
Gavrus
,
A.
,
Ragneau
,
E.
, and
Guines
,
D.
, 2002, “
Identification of the Friction Coefficients Directly From a Forging Process
,”
Proceedings of Euromech 435, Friction and Wear in Metal Forming
, Jun. 18–20, pp.
125
132
,
Valenciennes
,
France
.
29.
François
,
D.
, 1996,
Essais Mécaniques des Métaux–Détermination des Lois de Comportement
, Vol.
MB2
,
Les Techniques de l’Ingénieur
,
Paris, France
.
30.
Nagamatsu
,
A.
,
Murota
,
T.
, and
Jimma
,
T.
, 1971, “
On the Non-Uniform Deformation of Material in Axially Symmetric Compression Caused by Friction, Part One
,”
Bull. JSME
0021-3764,
14
(
70
), pp.
331
338
.
31.
Nagamatsu
,
A.
,
Murota
,
T.
, and
Jimma
,
T.
, 1971, “
On the Non-Uniform Deformation of Material in Axially Symmetric Compression Caused by Friction, Part Two
,”
Bull. JSME
0021-3764,
14
(
70
), pp.
339
347
.
32.
Kobayashi
,
S.
,
Oh
,
S. I.
, and
Altan
,
T.
, 1989,
Metal Forming and the Finite Element Method
,
Oxford University Press
,
New York
.
33.
Deltort
,
B.
,
Neme
,
A.
, and
Tanguy
,
B.
, 1997, “
A New Geometry for Compression Hopkinson Bars
,”
J. Phys. IV
1155-4339,
7
, pp.
265
270
.
34.
FORGE2®, Centre de Mise en Forme de Matériaux (CEMEF), Transvalor S.A, BO037, Sophia-Antipolis, France.
35.
Hamdi
,
R.
, 1997, “
Comportement Quasi-Statique et Dynamique des Aciers Pour Frappe et Forge à Froid
,” Ph.D. thesis, Université de Technologie de Compiègne, France.
36.
Stevenson
,
R.
, 1981, “
A comparison of constitutive relations incorporating strain rate hardening
,”
J. Eng. Mater. Technol.
0094-4289, Technical briefs,
103
, pp.
261
-
263
.
37.
Symonds
,
P. S.
, 1967, “
Survey of Methods of Analysis for Plastic Deformation of Structures Under Dynamic Loading
,” BU∕NSRDC, Brown University, Report No. BU∕NSRDC.
38.
Johnson
,
R.
, and
Cook
,
W. H.
, 1983, “
A Constitutive Model and Data for Metal Subjected to Large Strains, High Strain Rates and High Temperatures
,”
Proceedings of the Seventh International Symposium on Ballistics
,
The Hague
,
The Netherlands
, pp.
541
547
.
39.
Gavrus
,
A.
,
Ragneau
,
E.
, and
Caestecker
,
P.
, 2003, “
Analysis of a Constitutive Model for the Simulation of Dynamic Forming Processes
,”
Int. J. Form. Processes
1292-7775,
6
(
1
), pp.
33
52
.
40.
Kang
,
W. J.
,
Cho
,
S. S.
,
Huh
,
H.
, and
Chung
,
D. T.
, 1999, “
Modified Johnson-Cook model for vehicle body crashworthiness simulation
,”
Int. J. Veh. Des.
0143-3369,
21
(
4/5
), pp.
424
435
.
41.
Langrand
,
B.
,
Geoffroy
,
P.
,
Petitniot
,
J.-L.
,
Fabis
,
J.
,
Markiewicz
,
E.
, and
Drazetic
,
P.
, 1999, “
Identification technique of constitutive model parameters for crashworthiness modelling
,”
Aerosp. Sci. Technol.
1270-9638,
3
(
4
), pp.
215
227
.
42.
Liang
,
R.
and
Khan
,
A. S.
, 1999, “
A critical review of experimental results and constitutive models for BBC and FCC metals over a wide range of strain rates and temperatures
,”
Int. J. Plast.
0749-6419 (
15
), pp.
963
850
.
43.
Homquist
,
T. J.
, and
Johnson
,
G. R.
, 1991, “
Determination of Constants and Comparison of Results for Various Constitutive Models
,”
J. Phys. IV
1155-4339,
1
(
8
), pp.
853
860
.
44.
Meyer
,
L. W.
,
Seifert
,
K.
, and
Abdel-Malek
,
S.
, 1997, “
Behavior of Quenched and Tempered Steels Under High Strain Rate Compression Loading
,”
J. Phys. IV
1155-4339,
7
(
8
), pp.
571
576
.
45.
Zerilli
,
F. J.
, and
Armstrong
,
R. W.
, 1987, “
Dislocations Mechanics Base Constitutive Relations for Material Dynamic Calculations
,”
J. Appl. Phys.
0021-8979,
61
(
5
), pp.
1816
1825
.
46.
Valentin
,
T.
,
Magain
,
P.
,
Quik
,
M.
,
Labibes
,
K.
, and
Albertini
,
C.
, 2000, “
Validation of Constitutive Equations for Steel
,”
J. Phys. IV
1155-4339,
7
(
3
), pp.
611
616
.
47.
Lei
,
W.
,
Yao
,
M.
, and
Chen
,
B.
, 1996, “
Quantitative Description of Temperature and Strain Rate Dependence of Yield Strength of Structural Steels
,”
Eng. Fract. Mech.
0013-7944,
53
(
4
), pp.
643
663
.
48.
Majta
,
J.
,
Zurek
,
A.
,
Trujillo
,
C.
, and
Bator
,
A.
, 2003, “
Study of High Strain Rate Plastic Deformation of Low Carbon Microalloyed Steels Using Experimental Observation and Computational Modelling
,”
J. Phys. IV
1155-4339,
110
, pp.
117
122
.
49.
Cabrera
,
J. M.
,
Prado
,
J. M.
, and
Barron
,
M. A.
, 1999, “
An Inverse Analysis of the Hot Uniaxial Compression Test by the Means of the Finite Element Method
,”
Steel Res.
0177-4832,
70
, pp.
59
66
.
You do not currently have access to this content.