Motivated by a micromechanical determinist-probabilistic model coupled with damage recently developed by the authors, a new generalization is proposed to describe the nonlinear elasto-inelastic cyclic strain-stress behavior of polycrystals notably under biaxial cyclic loading paths. In this context, this generalization considers a compressible and linear anisotropic granular elastic strain behavior coupled with damage. The model is expressed in the framework of the time dependent plasticity for a small strain assumption. It is assumed that a damage variable initiates at the mesoscopic (granular) level where the plastic strain localization phenomenon takes place. The associated thermodynamic force of the damage variable is determined using the concept of total granular energy (elastic and inelastic). The transition of the elastic strain from the single to the polycrystal is modified due to its explicit coupling with damage. Comparisons between predicted and experimental results are conducted describing the low-cycle fatigue behavior of the aluminum alloy 2024 under different complex cyclic loading paths. It is demonstrated that the model has a reasonable ability in describing the cyclic behavior of this alloy. Qualitatively, the model is tested under different cyclic loading paths with stress-controlled condition describing especially the ratcheting behavior of the alloy. In fact, the effects of the applied mean stress on the predicted overall elasto-inelastic behavior and on the fatigue life are carefully studied. It shows the dependence of the fatigue life on the mean stress value.

1.
Finney
,
J. M.
, and
Laird
,
C.
, 1975, “
Strain Localization in Cyclic Deformation of Copper Single Crystals
,”
Philos. Mag.
0031-8086,
31
, pp.
339
366
.
2.
Mughrabi
,
H.
, 1981, “
Cyclic Plasticity of Matrix and Persistent Slip Bands in Fatigued Metals
,”
Continuum Models of Discrete Systems
,
O.
Brulin
and
R.
Hsieh
, eds.,
North-Holland
,
Amsterdam
, pp.
241
257
.
3.
Ferney
,
V.
, 1994, “
Etude de l’Ecrouissage Cyclique sous Sollicitations Complexes (Cas d’Alliages à Durcissement Structural)
, Ph.D. thesis, Université de Technologie de Compiègne, Compiègne, France.
4.
Doquet
,
V.
, 1989, “
Comportement et Endommagement de Deux Aciers à Structure Cubique Centrée et Cubique à Faces Centrées, en Fatigue Oligocyclique, sous Chargement Multiaxial Non proportionnel
,” Ph.D. thesis, École Nationale Supérieure des Mines de Paris, Paris, France.
5.
Abdul-Latif
,
A.
, and
Saanouni
,
K.
, 1996, “
Micromechanical Modeling of Low Cycle Fatigue Under Complex Loadings—Part II. Applications
,”
Int. J. Plast.
0749-6419,
12
, pp.
1123
1149
.
6.
Abdul-Latif
,
A.
,
Ferney
,
V.
, and
Saanouni
,
K.
, 1999, “
Fatigue Damage of Waspaloy Under Complex Loading
,”
ASME J. Eng. Mater. Technol.
0094-4289,
121
, pp.
278
285
.
7.
Saanouni
,
K.
, and
Abdul-Latif
,
A.
, 1996, “
Micromechanical Modeling of Low Cycle Fatigue Under Complex Loadings—Part I. Theoretical Formulation
,”
Int. J. Plast.
0749-6419,
12
, pp.
1111
1121
.
8.
Abdul-Latif
,
A.
, and
Chadli
,
M.
, 2007, “
Modeling of the Heterogeneous Damage Evolution at the Granular Scale in Polycrystals Under Complex Cyclic Loadings
,”
Int. J. Damage Mech.
1056-7895,
16
, pp.
133
158
.
9.
Huyen
,
N.
,
Flaceliere
,
L.
, and
Morel
,
F.
, 2008, “
A Critical Plane Fatigue Model With Coupled Meso-Plasticity and Damage
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
131
, pp.
12
28
.
10.
Mott
,
N. E.
, 1958, “
A Theory of the Origin of Fatigue Cracks
,”
Acta Metall.
0001-6160,
6
, pp.
195
197
.
11.
Lin
,
T. H.
, and
Ito
,
Y. M.
, 1969, “
Mechanics of Fatigue Crack Nucleation Mechanism
,”
J. Mech. Phys. Solids
0022-5096,
17
, pp.
511
523
.
12.
Tanaka
,
K.
, and
Mura
,
T.
, 1981, “
A Dislocation Model for Fatigue Crack Initiation
,”
ASME J. Appl. Mech.
0021-8936,
48
, pp.
97
103
.
13.
Venkataraman
,
G.
,
Chung
,
Y. W.
,
Nakasone
,
Y.
, and
Mura
,
T.
, 1990, “
Free Energy Formulation of Fatigue Crack Initiation Along Persistent Slip Bands: Calculation of S-N Curves and Crack Depths
,”
Acta Metall. Mater.
0956-7151,
38
, pp.
31
40
.
14.
Mura
,
T.
, 1987,
Micromechanics of Defects in Solids
,
Martinus Nijhoff
,
Dordrecht, The Netherlands
.
15.
Chadli
,
M.
, and
Abdul-Latif
,
A.
, 2005, “
Mesodamage Evolution in Polycrystals
,”
ASME J. Eng. Mater. Technol.
0094-4289,
127
, pp.
214
221
.
16.
Cordebois
,
J. P.
, and
Sidoroff
,
F.
, 1979, “
Damage Induced Elastic Anisotropy
,”
Colloque Euromech 115
, Villard de Lans, France.
17.
Saanouni
,
K.
,
Forster
,
Ch.
, and
Ben Hatira
,
F.
, 1994, “
On the Anelastic Flow With Damage
,”
Int. J. Damage Mech.
1056-7895,
3
, pp.
140
169
.
18.
Abdul-Latif
,
A.
, and
Saanouni
,
K.
, 1997, “
Effect of Some Parameters on the Plastic Fatigue Behavior With Micromechanical Approach
,”
Int. J. Damage Mech.
1056-7895,
6
, pp.
433
452
.
19.
Berveiller
,
M.
, and
Zaoui
,
A.
, 1979, “
An Extension of the Self-Consistent Scheme to Plasticity-Flowing Polycrystals
,”
J. Mech. Phys. Solids
0022-5096,
26
, pp.
325
344
.
20.
Pilvin
,
P.
, 1990, “
Approches Multiéchelles pour la Prévision du Comportement Anélastique des Métaux
,” Ph. D. thesis, Université Paris VI, Paris, France.
21.
Laird
,
C
, and
Duquette
,
D. J.
, 1972,
Corrosion Fatigue: Chemistry, Mechanics and Microstructure
,
O.
Devereux
.
A. J.
McEvily
, and
R. W.
Staehle
, eds.,
NACE
,
Houston, TX
, pp.
88
117
.
22.
Mughrabi
,
H.
, 1978, “
The Cyclic Hardening and Saturation Behavior of Copper Single Crystals
,”
Mater. Sci. Eng.
0025-5416,
33
, pp.
207
224
.
23.
Neumann
,
P.
, 1983, “
Fatigue
,”
Physical Metallurgy
,
R. W.
Cahn
and
P.
Haasen
, eds.,
Elsevier
,
Amsterdam
.
24.
Lemaître
,
J.
, and
Chaboche
,
J. L.
, 1985,
Mécanique des Matériaux Solides
,
Dunod
,
Paris
.
25.
Kanazawa
,
K.
,
Miller
,
K. J.
, and
Brown
,
M. W.
, 1977, “
Cyclic Deformation of 1% Cr-Mo-V Steel Under Out-of-Phase Loads
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
2
, pp.
217
228
.
26.
Forsyth
,
P. J. E.
, 1961, “
A Two Stage Process of Fatigue Crack Growth
,”
Proceedings of the Symposium on Crack Propagation
, Cranfield, England.
27.
Farcy
,
L.
, 1990, “
Etude Comparative des Mécanismes de Fissuration dans Deux Alliages d’Aluminium (2024 et Aluminium-Lithium 2091)
,” Ph.D. thesis, Université de Technologie de Compiègne, Compiègne, France.
28.
Hautefeuille-Beylat
,
L.
, 1991, “
Etude des Modes de Déformation d’Alliages d’Aluminium sous Sollicitions Monotone et Cyclique (Chargements proportionnels Non proportionnels)
,” Ph.D. thesis, Université de Technologie de Compiègne, Compiègne, France.
29.
Abdul-Latif
,
A.
, 2004, “
Pertinence of the Grains Aggregate Type on the Self-Consistent Model Responses
,”
Int. J. Solids Struct.
0020-7683,
41
, pp.
305
322
.
You do not currently have access to this content.