The first part of this paper characterizes the effect of tooling and process parameters such as the length of distribution media used in vacuum assisted resin transfer molding (VARTM) of composite laminates. To achieve this goal, a number of 6-ply, woven carbon fiber/epoxy laminates are fabricated by using various lengths of distribution media. The spatial variations of mechanical properties of these laminates are characterized using a three-point bending fixture. It is shown that for relatively thinner laminates, extending the distribution media degrades the flexural properties by as much as 14%, possibly due to air pockets entrapped during through-the-thickness impregnation of the fibrous fabric. In the second part, a minimum distribution media length is used to investigate the mechanical property and microstructure changes due to multiwalled carbon nanotubes (MWNTs) dispersed in the composite laminates. In addition, effects of different nanotube functionalization and morphology are characterized via scanning electron microscopy and optical microscopy. To achieve adequate nanotube dispersion in the epoxy resin, both tip sonication and mechanical mixing have been used. The effect of sonication time on the dispersion of nanotubes is reported by monitoring the temporal changes in the nanotube cluster size. Even at volume fractions less than 1%, almost 10% improvements in flexural properties is observed. Extensive void formations are reported for laminates containing MWNTs, possibly preventing greater improvements in mechanical properties.

References

1.
Shaffer
,
M. S. P.
,
Qian
,
H.
,
Greenhalgh
,
E. S.
, and
Bismarck
,
A.
, 2010, “
Carbon Nanotube-Based Hierarchical Composites: A Review
,”
J. Mater. Chem.
,
20
(
23
), pp.
4751
4762
.
2.
Thostenson
,
E. T.
,
Li
,
C. Y.
, and
Chou
,
T. W.
, 2005, “
Nanocomposites in Context
,”
Compos. Sci. Technol.
,
65
(
3–4
), pp.
491
516
.
3.
Chou
,
T. W.
, and
Thostenson
,
E. T.
, 2006, “
Processing-Structure-Multi-Functional Property Relationship in Carbon Nanotube/Epoxy Composites
,”
Carbon
,
44
(
14
), pp.
3022
3029
.
4.
Klosterman
,
D.
,
Williams
,
M.
,
Heitkamp
,
C.
,
Donaldson
,
R.
, and
Browning
,
C.
, 2007, “
Fabrication and Evaluation of Epoxy Nanocomposites and Carbon/Epoxy Composite Laminates Containing Oxidized Carbon Nanofibers
,”
SAMPE J.
,
43
(
4
), pp.
7
17
.
5.
Johnson
,
R. J.
, and
Pitchumani
,
R.
, 2007, “
Flow Control Using Localized Induction Heating in a Vartm Process
,”
Compos. Sci. Technol.
,
67
(
3–4
), pp.
669
684
.
6.
Johnson
,
R. J.
, and
Pitchumani
,
R.
, 2006, “
Simulation of Active Flow Control Based on Localized Preform Heating in a VARTM Process
,”
Composites Part A- Composites, Part A
,
37
(
10
), pp.
1815
1830
.
7.
Johnson
,
R. J.
, and
Pitchumani
,
R.
, 2008, “
Active Control of Reactive Resin Flow in a Vacuum Assisted Resin Transfer Molding (VARTM) Process
,”
J. Compos. Mater.
,
42
(
12
), pp.
1205
1229
.
8.
Alms
,
J. B.
,
Glancey
,
J. L.
, and
Advani
,
S. G.
, 2010, “
Mechanical Properties of Composite Structures Fabricated with the Vacuum Induced Preform Relaxation Process
,”
Compos. Struc.
,
92
(
12
), pp.
2811
2816
.
9.
Rachmadini
,
Y.
,
Tan
,
V. B. C.
, and
Tay
,
T. E.
, 2010, “
Enhancement of Mechanical Properties of Composites Through Incorporation of CNT in VARTM—A Review
,”
J. Reinf. Plast. Compos.
,
29
(
18
), pp.
2782
2807
.
10.
Chohra
,
M.
,
Advani
,
S. G.
,
Gokce
,
A.
, and
Yarlagadda
,
S.
, 2006, “
Modeling of Filtration through Multiple Layers of Dual Scale Fibrous Porous Media
,”
Polymer Compos.
,
27
(
5
), pp.
570
581
.
11.
Gokce
,
A.
,
Chohra
,
M.
,
Advani
,
S. G.
, and
Walsh
,
S. M.
, 2005, “
Permeability Estimation Algorithm to Simultaneously Characterize the Distribution Media and the Fabric Preform in Vacuum Assisted Resin Transfer Molding Process
,”
Compos. Sci. Technol.
,
65
(
14
), pp.
2129
2139
.
12.
Simacek
,
P.
, and
Advani
,
S. G.
, 2007, “
Modeling Resin Flow and Fiber Tow Saturation Induced by Distribution Media Collapse in VARTM
,”
Compos. Sci. Technol.
,
67
, pp.
2757
2769
.
13.
Advani
,
S. G.
,
Fan
,
Z. H.
, and
Santare
,
M. H.
, 2008, “
Interlaminar Shear Strength of Glass Fiber Reinforced Epoxy Composites Enhanced With Multi-Walled Carbon Nanotubes
,”
Composites, Part A
,
39
(
3
), pp.
540
554
.
14.
Bekyarova
,
E.
,
Thostenson
,
E. T.
,
Yu
,
A.
,
Kim
,
H.
,
Gao
,
J.
,
Tang
,
J.
,
Hahn
,
H. T.
,
Chou
,
T. W.
,
Itkis
,
M. E.
, and
Haddon
,
R. C.
, 2007, “
Multiscale Carbon Nanotube-Carbon Fiber Reinforcement for Advanced Epoxy Composites
,”
Langmuir
,
23
(
7
), pp.
3970
3974
.
15.
Davis
,
D. C.
,
Wilkerson
,
J. W.
,
Zhu
,
J. A.
, and
Ayewah
,
D. O. O.
, 2010, “
Improvements in Mechanical Properties of a Carbon Fiber Epoxy Composite Using Nanotube Science and Technology
,”
Compos. Struct.
,
92
(
11
), pp.
2653
2662
.
16.
Zhou
,
Y. X.
,
Pervin
,
F.
,
Lewis
,
L.
, and
Jeelani
,
S.
, 2008, “
Fabrication and Characterization of Carbon/Epoxy Composites Mixed With Multi-Walled Carbon Nanotubes
,”
Mater. Sci. Eng., A
,
475
(
1–2
), pp.
157
165
.
17.
Abot
,
J. L.
,
Bardin
,
G.
,
Spriegel
,
C.
,
Song
,
Y.
,
Raghavan
,
V.
, and
Govindaraju
,
N.
, 2011, “
Thermal Conductivity of Carbon Nanotube Array Laminated Composite Materials
,”
J. Compos. Mater.
,
45
(
3
), pp.
321
340
.
18.
Hosur
,
M. V.
,
Chowdhury
,
F.
, and
Jeelani
,
S.
, 2007, “
Low-Velocity Impact Response and Ultrasonic Nde of Woven Carbon/Epoxy-Nanoclay Nanocomposites
,”
J. Compos. Mater.
,
41
(
18
), pp.
2195
2212
.
19.
Peila
,
R.
,
Seferis
,
J. C.
,
Karaki
,
T.
, and
Parker
,
G.
, 2009, “
Effects of Nanoclay on the Thermal and Rheological Properties of a Vartm (Vacuum Assisted Resin Transfer Molding) Epoxy Resin
,”
J. Therm Anal. Calorim.
,
96
(
2
), pp.
587
592
.
20.
Aktas
,
L.
, and
Altan
,
M. C.
, 2010, “
Characterization of Nanocomposite Laminates Fabricated From Aqueous Dispersion of Nanoclay
,”
Polym. Compos.
,
31
(
4
), pp.
620
629
.
21.
Aktas
,
L.
, and
Altan
,
M. C.
, 2010, “
Effect of Nanoclay Content on Properties of Glass-Waterborne Epoxy Laminates at Low Clay Loading
,”
Mater. Sci. Technol.
,
26
(
5
), pp.
626
629
.
22.
Bose
,
S.
, and
Mahanwar
,
P. A.
, 2005, “
Influence of Particle Size and Particle Size Distribution on Mica Filled Nylon 6 Composite
,”
J. Mater. Sci.
,
40
(
24
), pp.
6423
6428
.
23.
Lengalova
,
A.
,
Pavlinek
,
V.
,
Saha
,
P.
,
Quadrat
,
O.
, and
Stejskal
,
J.
, 2003, “
The Effect of Dispersed Particle Size and Shape on the Electrorheological Behaviour of Suspensions
,”
Colloids Surf., A
,
227
(
1–3
), pp.
1
8
.
24.
Nakamura
,
Y.
,
Yamaguchi
,
M.
,
Okubo
,
M.
, and
Matsumoto
,
T.
, 1992, “
Effect of Particle-Size on Mechanical-Properties of Epoxy-Resin Filled With Angular-Shaped Silica
,”
J. Appl. Polym. Sci.
,
44
(
1
), pp.
151
158
.
25.
Siviour
,
C. R.
,
Gifford
,
M. J.
,
Walley
,
S. M.
,
Proud
,
W. G.
, and
Field
,
J. E.
, 2004, “
Particle Size Effects on the Mechanical Properties of a Polymer Bonded Explosive
,”
J. Mater. Sci.
,
39
(
4
), pp.
1255
1258
.
26.
Bal
,
S.
, 2010, “
Dispersion and Reinforcing Mechanism of Carbon Nanotubes in Epoxy Nanocomposites
,”
Bull. Mater. Sci.
,
33
(
1
), pp.
27
31
.
27.
Park
,
C.
,
Ounaies
,
Z.
,
Watson
,
K. A.
,
Crooks
,
R. E.
,
Smith
,
J.
,
Lowther
,
S. E.
,
Connell
,
J. W.
,
Siochi
,
E. J.
,
Harrison
,
J. S.
, and
Clair
,
T. L. S.
, 2002, “
Dispersion of Single Wall Carbon Nanotubes by in Situ Polymerization Under Sonication
,”
Chem. Phys. Lett.
,
364
(
3–4
), pp.
303
308
.
28.
Cheng
,
Q. H.
,
Debnath
,
S.
,
Gregan
,
E.
, and
Byrne
,
H. J.
, 2010, “
Ultrasound-Assisted Swnts Dispersion: Effects of Sonication Parameters and Solvent Properties
,”
J. Phys. Chem. C
,
114
(
19
), pp.
8821
8827
.
29.
Kim
,
J. A.
,
Seong
,
D. G.
,
Kang
,
T. J.
, and
Youn
,
J. R.
, 2006, “
Effects of Surface Modification on Rheological and Mechanical Properties of Cnt/Epoxy Composites
,”
Carbon
,
44
(
10
), pp.
1898
1905
.
30.
Qiu
,
J. J.
,
Zhang
,
C.
,
Wang
,
B.
, and
Liang
,
R.
, 2007, “
Carbon Nanotube Integrated Multifunctional Multiscale Composites
,”
Nanotechnology
,
18
(
27
), pp.
1
11
.
31.
Akinyede
,
O.
,
Mohan
,
R.
,
Kelkar
,
A.
, and
Sankar
,
J.
, 2009, “
Static and Fatigue Behavior of Epoxy/Fiberglass Composites Hybridized With Alumina Nanoparticles
,”
J. Compos. Mater.
,
43
(
7
), pp.
769
781
.
32.
Sadeghian
,
R.
,
Gangireddy
,
S.
,
Minaie
,
B.
, and
Hsiao
,
K. T.
, 2006, “
Manufacturing Carbon Nanofibers Toughened Polyester/Glass Fiber Composites Using Vacuum Assisted Resin Transfer Molding for Enhancing the Mode-I Delamination Resistance
,”
Composites, Part A
,
37
(
10
), pp.
1787
1795
.
33.
Mall
,
S.
,
Katwyk
,
D. W.
,
Bolick
,
R. L.
,
Kelkar
,
A. D.
, and
Davis
,
D. C.
, 2009, “
Tension-Compression Fatigue Behavior of a H-Vartm Manufactured Unnotched and Notched Carbon/Epoxy Composite
,”
Compos. Struct.
,
90
(
2
), pp.
201
207
.
34.
Rangari
,
V. K.
,
Bhuyan
,
M. S.
, and
Jeelani
,
S.
, 2010, “
Microwave Processing and Characterization of Epon 862/Cnt Nanocomposites
,”
Mater. Sci. Eng., B
,
168
(
1–3
), pp.
117
121
.
35.
Zhou
,
Y. X.
,
Pervin
,
F.
,
Jeelani
,
S.
, and
Mallick
,
P. K.
, 2008, “
Improvement in Mechanical Properties of Carbon Fabric-Epoxy Composite Using Carbon Nanofibers
,”
J. Mater. Process. Technol.
,
198
(
1–3
), pp.
445
453
.
36.
Hamidi
,
Y. K.
,
Aktas
,
L.
, and
Altan
,
M. C.
, 2008, “
Effect of Nanoclay Content on Void Morphology in Resin Transfer Molded Composites
,”
J. Thermoplastic Compos. Mater.
,
21
(
2
), pp.
141
163
.
38.
Ghidossi
,
P.
,
El Mansori
,
M.
, and
Pierron
,
F.
, 2004, “
Edge Machining Effects on the Failure of Polymer Matrix Composite Coupons
,”
Composites, Part A
,
35
(
7–8
), pp.
989
999
.
39.
Arola
,
D. D.
, and
Ramulu
,
M.
, 1998, “
Net-Shape Machining and the Process-Dependent Failure of Fiber-Reinforced Plastics Under Static Loads
,”
J. Compos. Technol. Res.
,
20
(
4
), pp.
210
220
.
40.
Hamidi
,
Y. K.
,
Aktas
,
L.
, and
Altan
,
M. C.
, 2004, “
Formation of Microscopic Voids in Resin Transfer Molded Composites
,”
ASME J. Eng. Mater. Technol.
,
126
(
4
), pp.
420
426
.
41.
Hamidi
,
Y. K.
,
Dharmavaram
,
S.
,
Aktas
,
L.
, and
Altan
,
M. C.
, 2009, “
Effect of Fiber Content on Void Morphology in Resin Transfer Molded E-Glass/Epoxy Composites
,”
ASME J. Eng. Mater. Technol.
,
131
(
2
), p.
021014
.
42.
Mathur
,
R.
,
Heider
,
D.
,
Hoffmann
,
C.
,
Gillespie
,
J. W.
,
Advani
,
S. G.
, and
Fink
,
B. K.
, 2001, “
Flow Front Measurements and Model Validation in the Vacuum Assisted Resin Transfer Molding Process
,”
Polym. Compos.
,
22
(
4
), pp.
477
490
.
43.
Barraza
,
H. J.
,
Hamidi
,
Y. K.
,
Aktas
,
L.
,
O’Rear
,
E. A.
, and
Altan
,
M. C.
, 2004, “
Porosity Reduction in the High-Speed Processing of Glass-Fiber Composites by Resin Transfer Molding (RTM)
,”
J. Compos. Mater.
,
38
(
3
), pp.
195
226
.
44.
Hamidi
,
Y. K.
,
Aktas
,
L.
, and
Altan
,
M. C.
, 2005, “
Effect of Packing on Void Morphology in Resin Transfer Molded E-Glass/Epoxy Composites
,”
Polym. Compos.
,
26
(
5
), pp.
614
627
.
45.
Lin
,
L. Y.
,
Lee
,
J. H.
,
Hong
,
C. E.
,
Yoo
,
G. H.
, and
Advani
,
S. G.
, 2006, “
Preparation and Characterization of Layered Silicate/Glass Fiber/Epoxy Hybrid Nanocomposites Via Vacuum-Assisted Resin Transfer Molding (VARTM)
,”
Compos. Sci. Technol.
,
66
(
13
), pp.
2116
2125
.
46.
Aktas
,
L.
,
Dharmavaram
,
S.
,
Hamidi
,
Y. K.
, and
Altan
,
M. C.
, 2008, “
Filtration and Breakdown of Clay Clusters During Resin Transfer Molding of Nanoclay/Glass/Epoxy Composites
,”
J. Compos. Mater.
,
42
(
21
), pp.
2209
2229
.
47.
Akinyede
,
O.
,
Mohan
,
R.
,
Kelkar
,
A.
, and
Sankar
,
J.
, 2010, “
Processing and Thermo-Physical Characterization of Alumina Particulate Reinforced 3-Phase Hybrid Composite Material System
,”
J. Adv. Mater.
,
42
(
3
), pp.
5
19
.
48.
Lucas
,
A.
,
Zakri
,
C.
,
Maugey
,
M.
,
Pasquali
,
M.
, Van Der
Schoot
,
P.
, and
Poulin
,
P.
, 2009, “
Kinetics of Nanotube and Microfiber Scission Under Sonication
,”
J. Phys. Chem. C
,
113
(
48
), pp.
20599
20605
.
49.
Kuentzer
,
N.
,
Simacek
,
P.
,
Advani
,
S. G.
, and
Walsh
,
S.
, 2007, “
Correlation of Void Distribution to Vartm Manufacturing Techniques
,”
Composites Part A- Composites, Part A
,
38
(
3
), pp.
802
813
.
You do not currently have access to this content.