Determining a material constitutive law that is representative of the extreme conditions found in the cutting zone during machining operations is a very challenging problem. In this study, dynamic shear tests, which reproduce, as faithfully as possible, these conditions in terms of strain, strain rate, and temperature, have been developed using hat-shaped specimens. The objective was to identify the parameters of a Johnson–Cook material behavior model by an inverse method for two titanium alloys: Ti6Al4V and Ti555-3. In order to be as representative as possible of the experimental results, the parameters of the Johnson–Cook model were not considered to be constant over the total range of the strain rate and temperature investigated. This reflects a change in the mechanisms governing the deformation. The shear zones observed in hat-shaped specimens were analyzed and compared to those produced in chips during conventional machining for both materials. It is concluded that the observed shear bands can be classified as white-etching bands only for the Ti555-3 alloy. These white bands are assumed to form more easily in the Ti555-3 alloy due to its predominately β phase microstructure compared to the Ti6Al4V alloy with a α + β microstructure.

References

1.
Ezugwu
,
E. O.
,
Bonney
,
J.
, and
Yamane
,
Y.
,
2003
, “
An Overview of the Machinability of Aeroengine Alloys
,”
J. Mater. Process. Tech.
,
134
(
2
), pp.
233
253
.10.1016/S0924-0136(02)01042-7
2.
Ezugwu
,
E. O.
, and
Wang
,
Z. M.
,
1997
, “
Titanium Alloys and Their Machinability—A Review
,”
J. Mater. Process. Tech.
,
68
(
3
), pp.
262
274
.10.1016/S0924-0136(96)00030-1
3.
Ohkubo
,
C.
,
Watanabe
, I
.
, and
Ford
,
J. P.
,
2000
, “
The Machinability of Cast Titanium and Ti–6Al–4V
,”
Biomaterials
,
21
(
4
), pp.
421
428
.10.1016/S0142-9612(99)00206-9
4.
Shaw
,
M. C.
,
Dirke
,
S. O.
, and
Smith
,
P. A.
,
1954
, “
Machining Titanium
,”
MIT Rep.
, 4th ed.,
Massachusetts Institute of Technology
, Cambridge, MA.
5.
Komanduri
,
R.
, and
Von Turkovich
,
B. F.
,
1981
, “
New Observations on the Mechanism of Chip Formation When Machining Titanium Alloys
,”
Wear
,
69
(
2
), pp.
179
188
.10.1016/0043-1648(81)90242-8
6.
Barry
,
J.
,
Byrne
,
G.
, and
Lennon
,
D.
,
2001
, “
Observations on Chip Formation and Acoustic Emission in Machining Ti-6Al-4V Alloy
,”
Int. J. Mach. Tool. Manu.
,
41
(
7
), pp.
1055
1070
.10.1016/S0890-6955(00)00096-1
7.
Bayoumi
,
A. E.
, and
Xie
,
J. Q.
,
1995
, “
Some Metallurgical Aspects of Chip Formation in Cutting Ti-6wt.%Al-4wt.%V Alloy
,”
Mater. Sci. Eng. A
,
190
(
1–2
), pp.
173
180
.10.1016/0921-5093(94)09595-N
8.
Komanduri
,
R.
,
1982
, “
Some Clarifications on the Mechanics of Chip Formation When Machining Titanium Alloys
,”
Wear
,
76
(
1
), pp.
15
34
.10.1016/0043-1648(82)90113-2
9.
Nemat-Nasser
,
S.
,
Guo
,
W.
, and
Nesterenko
, V
. F.
,
2001
, “
Dynamic Response of Conventional and Hot Isostatically Pressed Ti-6Al-4V Alloys: Experiments and Modeling
,”
Mech. Mater.
,
33
(
8
), pp.
425
439
.10.1016/S0167-6636(01)00063-1
10.
Molinari
,
A.
,
Musquar
,
C.
, and
Sutter
,
G.
,
2002
, “
Adiabatic Shear Banding in High Speed Machining of Ti-6Al-4V: Experiments and Modeling
,”
Int. J. Plasticity
,
18
(
4
), pp.
443
459
.10.1016/S0749-6419(01)00003-1
11.
Puerta Velásquez
,
J. D.
,
Bolle
,
B.
, and
Chevrier
,
P.
,
2007
, “
Metallurgical Study on Chips Obtained by High Speed Machining of a Ti–6 wt.%Al–4 wt.%V Alloy
,”
Mater. Sci. Eng. A
,
452–453
, pp.
469
474
.10.1016/j.msea.2006.10.090
12.
Vyas
,
A.
, and
Shaw
,
M. C.
,
1999
, “
Mechanics of Saw-Tooth Chip Formation in Metal Cutting
,”
ASME J. Manuf. Sci. Eng.
,
121
(
2
), pp.
163
172
.10.1115/1.2831200
13.
Mabrouki
,
T.
, and
Rigal
,
J.
,
2006
, “
A Contribution to a Qualitative Understanding of Thermo-Mechanical Effects During Chip Formation in Hard Turning
,”
J. Mater. Process. Tech.
,
176
(
1–3
), pp.
214
221
.10.1016/j.jmatprotec.2006.03.159
14.
Vaz
, Jr.,
M.
,
Owen
,
D. R. J.
, and
Kalhori
, V
.
,
2007
, “
Modelling and Simulation of Machining Processes
,”
Arch. Comput. Method. Eng.
,
14
(
2
), pp.
173
204
.10.1007/s11831-007-9005-7
15.
Guo
,
Y. B.
, and
Yen
,
D. W.
,
2004
, “
A FEM Study on Mechanisms of Discontinuous Chip Formation in Hard Machining
,”
J. Mater. Process. Tech.
,
155–156
, pp.
1350
1356
.10.1016/j.jmatprotec.2004.04.210
16.
Dassault Systèmes Simulia
,
C.
,
2008
, ABAQUS Version 6.8 documentation.
17.
Shrot
,
A.
, and
Bäker
,
M.
,
2012
, “
Determination of Johnson–Cook Parameters From Machining Simulations
,”
Comp. Mater. Sci.
,
52
(
1
), pp.
298
304
.10.1016/j.commatsci.2011.07.035
18.
Albert
J. S.
,
1996
, “
Finite Element Analysis of Orthogonal Metal Cutting Mechanics
,”
Int. J. Mach. Tool. Manu.
,
36
(
2
), pp.
255
273
.10.1016/0890-6955(95)98765-Y
19.
Hayes
,
F. H.
,
1995
, “
The Al-Ti-V (Aluminum-Titanium-Vanadium) System
,”
J. Phase Equilib.
,
16
(
2
), pp.
163
176
.10.1007/BF02664854
20.
Hartman
,
K. H.
,
Kunze
,
H. D.
, and
Meyer
,
L. W.
,
1981
, “
Metallurgical Effects on Impact Loaded Materials
,” Shock Waves and High-Strain-Rate Phenomena in Metals, M. A. Meyers and L. E. Murr, eds., Plenum Press, New York, pp.
325
337
.
21.
Meyers
,
M. A.
,
Subhash
,
G.
, and
Kad
,
B. K.
,
1994
, “
Evolution of Microstructure and Shear-Band Formation in α-Hcp Titanium
,”
Mech. Mater.
,
17
(
2–3
), pp.
175
193
.10.1016/0167-6636(94)90058-2
22.
Lee
,
W.
, and
Lin
,
C.
,
1998
, “
High-Temperature Deformation Behaviour of Ti6Al4V Alloy Evaluated by High Strain-Rate Compression Tests
,”
J. Mater. Process. Tech.
,
75
(
1–3
), pp.
127
136
.10.1016/S0924-0136(97)00302-6
23.
Ankem
,
S.
,
Shyue
,
J. G.
, and
Vijayshankar
,
M. N.
,
1989
, “
The Effect of Volume Per Cent of Phase on the High Temperature Tensile Deformation of Two-Phase Ti-Mn Alloys
,”
Mater. Sci. Eng. A
,
111
, pp.
51
61
.10.1016/0921-5093(89)90197-4
24.
Ding
,
R.
, and
Guo
,
Z. X.
,
2004
, “
Microstructural Evolution of a Ti-6Al-4V Alloy During β-Phase Processing: Experimental and Simulative Investigations
,”
Mater. Sci. Eng. A
,
365
(
1–2
), pp.
172
179
.10.1016/j.msea.2003.09.024
25.
Johnson
,
G. R.
, and
Cook
,
W. H.
,
1983
, “
A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures
,”
Proceeding 7th International Symposium on Ballistics
, The Hague, April 19–21, pp.
541
547
.
26.
Bäker
,
M.
,
2006
, “
Finite Element Simulation of High-Speed Cutting Forces
,”
J. Mater. Process. Tech.
,
176
(
1–3
), pp.
117
126
.10.1016/j.jmatprotec.2006.02.019
27.
Calamaz
,
M.
,
Coupard
,
D.
, and
Girot
,
F.
,
2010
, “
Numerical Simulation of Titanium Alloy Dry Machining With a Strain Softening Constitutive Law
,”
Mach. Sci. Tech.
,
14
(
2
), pp.
244
257
.10.1080/10910344.2010.500957
28.
Zerilli
,
F. J.
, and
Armstrong
,
R. W.
,
1987
, “
Dislocation-Mechanics-Based Constitutive Relations for Material Dynamics Calculations
,”
J. Appl. Phys.
,
61
(
5
), pp.
1816
1825
.10.1063/1.338024
29.
Lemaitre
,
J.
, and
Chaboche
,
J. L.
,
1990
,
Mechanics of Solid Materials
,
Cambridge University Press
,
Cambridge, MA
.
30.
Levenberg
,
K.
,
1944
, “
A Method for the Solution of Certain Nonlinear Problems in Least Squares
,”
Quart. Appl. Math.
,
2
(
2
), pp.
164
168
.
31.
Marquardt
,
D. W.
,
1963
, “
An Algorithm for Least-Squares Estimation of Nonlinear Parameters
,”
J. Soc. Ind. Appl. Math.
,
11
(
2
), pp.
431
441
.10.1137/0111030
32.
Galassi
,
M.
,
Davies
,
J.
, and
Theiler
,
J.
,
2003
,
GNU Scientific Library Reference Manual
,
Network Theory Limited
, Bristol, UK.
33.
Cao
,
Z.
,
He
,
N.
, and
Li
,
L.
,
2008
, “
Chip Formation and Its Numerical Simulation in High Speed Cutting of Ti6Al4V Alloy
,”
Zhongguo Jixie Gongcheng/Chin. Mech. Eng.
,
19
(
20
), pp.
2450
2454
.
34.
Macdougall
,
D. A. S.
, and
Harding
,
J.
,
1998
, “
The Measurement of Specimen Surface Temperature in High-Speed Tension and Torsion Tests
,”
Int. J. Impact Eng.
,
21
(
6
), pp.
473
488
.10.1016/S0734-743X(98)00007-4
35.
Khan
,
A. S.
,
Sung Suh
,
Y.
, and
Kazmi
,
R.
,
2004
, “
Quasi-Static and Dynamic Loading Responses and Constitutive Modeling of Titanium Alloys
,”
Int. J. Plasticity
,
20
(
12
), pp.
2233
2248
.10.1016/j.ijplas.2003.06.005
36.
Meyer
, Jr.,
H. W.
, and
Kleponis
,
D. S.
,
2001
, “
Modeling the High Strain Rate Behavior of Titanium Undergoing Ballistic Impact and Penetration
,”
Int. J. Impact Eng.
,
26
(
1–10
), pp.
509
521
.10.1016/S0734-743X(01)00107-5
37.
Lesuer
,
D. R.
,
2000
, “
Experimental Investigations of Material Models for Ti-6Al-4V Titanium and 2024-T3 Aluminum
,” Office of Aviation Research (USA), Technical Report PB2001-101864 DOT/FAA/AR-00/25.
38.
Lee
,
W.
, and
Lin
,
C.
,
1998
, “
Plastic Deformation and Fracture Behaviour of Ti-6Al-4V Alloy Loaded With High Strain Rate Under Various Temperatures
,”
Mater. Sci. Eng. A
,
241
(
1–2
), pp.
48
59
.10.1016/S0921-5093(97)00471-1
39.
Hor
,
A.
,
2010
, “
Simulation Physique Des Procédés De Fabrication: Caractérisation De La Rhéologie Et De l'Endommagement Lors d'Opérations De Forgeage Et d'Usinage
,” Ph.D. thesis, Arts et Métiers ParisTech, France.
40.
Zemzemi
,
F.
,
2007
, “
Caractérisation De Modèles De Frottement Aux Interfaces Pièce-Outil-Copeau En Usinage: Application Au Cas De l'Usinage Des Aciers Et De l'Inconel 718
,” Ph.D. Thesis, Ecole Centrale de Lyon, France.
41.
Calamaz
,
M.
,
Coupard
,
D.
, and
Nouari
,
M.
,
2011
, “
Numerical Analysis of Chip Formation and Shear Localisation Processes in Machining the Ti-6Al-4V Titanium Alloy
,”
Int. J. Adv. Manu. Tech.
,
52
(
9–12
), pp.
887
895
.10.1007/s00170-010-2789-x
42.
Sun
,
S.
,
Brandt
,
M.
, and
Dargusch
,
M. S.
,
2009
, “
Characteristics of Cutting Forces and Chip Formation in Machining of Titanium Alloys
,”
Int. J. Mach. Tool. Manu.
,
49
(
7–8
), pp.
561
568
.10.1016/j.ijmachtools.2009.02.008
43.
Ramesh
,
A.
,
Melkote
,
S. N.
, and
Allard
,
L. F.
,
2005
, “
Analysis of White Layers Formed in Hard Turning of AISI 52100 Steel
,”
Mater. Sci. Eng. A
,
390
(
1–2
), pp.
88
97
.10.1016/j.msea.2004.08.052
44.
Poulachon
,
G.
,
Albert
,
A.
, and
Schluraff
,
M.
,
2005
, “
An Experimental Investigation of Work Material Microstructure Effects on White Layer Formation in PCBN Hard Turning
,”
Int. J. Mach. Tool. Manu.
,
45
(
2
), pp.
211
218
.10.1016/j.ijmachtools.2004.07.009
45.
Xu
,
Y.
,
Zhang
,
J.
, and
Bai
,
Y.
,
2008
, “
Shear Localization in Dynamic Deformation: Microstructural Evolution
,”
Metall. Mater. Trans. A
,
39
(
4
), pp.
811
843
.10.1007/s11661-007-9431-z
46.
Xu
,
Y. B.
,
Liu
,
L.
, and
Yu
,
J. Q.
,
2000
, “
Thermoplastic Shear Localisation in Titanium Alloys During Dynamic Deformation
,”
Mater. Sci. Tech.
,
16
(
6
), pp.
609
611
.10.1179/026708300101508351
You do not currently have access to this content.