Hollow particulate composites are lightweight, have high compressive strength, are low moisture absorbent, have high damping materials, and are used extensively in aerospace, marine applications, and in the manufacture of sandwich composites core elements. The high performance of these materials is achieved by adding high strength hollow glass particulates (microballoons) to an epoxy matrix, forming epoxy-syntactic foams. The present study focuses on the effect of volume fraction and microballoon size on the ultrasonic and dynamic properties of Epoxy Syntactic Foams. Ultrasonic attenuation coefficient from an experiment is compared with a previously developed theoretical model for low volume fractions that takes into account attenuation loss due to scattering and absorption. The guidelines of ASTM Standard E 664-93 are used to compute the apparent attenuation. Quasi-static compressive tests were also conducted to fully characterize the material. Both quasi-static and dynamic properties, as well as coefficients of attenuation and ultrasonic velocities are found to be strongly dependent upon the volume fraction and size of the microballoons.

References

1.
Mylavarapu
,
P.
, and
Woldesenbet
,
E.
,
2010
, “
A Predictive Model for Ultrasonic Attenuation Coefficient in Particulate Composites
,”
Composites, Part B
,
1
, pp.
42
47
.10.1016/j.compositesb.2009.06.007
2.
Mix
,
P.
,
2005
,
Introduction to Nondestructive Testing: A Training Guide
, 2nd ed.,
Wiley-Interscience
,
New York
.
3.
Biwa
,
S.
,
Idekoba
,
S.
, and
Ohno
,
N.
,
2002
, “
Wave Attenuation in Particulate Polymer Composites: Independent Scattering/Absorption Analysis and Comparison to Measurements
,”
Mech. Mater.
,
34
(
10
), pp.
671
682
.10.1016/S0167-6636(02)00167-9
4.
Ishimaru
,
A.
,
1977
, “
Theory and Application of Wave-Propagation and Scattering in Random Media
,”
Proc. IEEE
,
65
(
7
), pp.
1030
1061
.10.1109/PROC.1977.10612
5.
Kinra
, V
.
, and
Anand
,
A.
,
1982
, “
Wave-Propagation in Random Particulate Composites at Long and Short Wavelengths
,”
Int. J. Solids Struct.
,
18
(
5
), pp.
36
380
.10.1016/0020-7683(82)90076-2
6.
Ying
,
C.
, and
Truell
,
R.
,
1956
, “
Scattering of a Plane Longitudinal Wave by a Spherical Obstacle in an Isotropically Elastic Solid
,”
J. Appl. Phys.
,
27
, pp.
1086
1089
.10.1063/1.1722545
7.
Kinra
, V
.
,
Day
,
N.
,
Maslov
,
K.
,
Henderson
,
B.
, and
Diderich
,
G.
,
1998
, “
The Transmission of a Longitudinal Wave Through a Layer of Spherical Inclusions With a Random or Periodic Arrangement
,”
J. Mech. Phys. Solids
,
46
(
1
), pp.
153
165
.10.1016/S0022-5096(97)00030-6
8.
Kinra
, V
.
, and
Ker
,
E.
,
1983
, “
An Experimental Investigation of Pass Bands and Stop Bands in 2 Periodic Particulate Composites
,”
Int. J. Solids Struct.
,
19
(
5
), pp.
393
410
.10.1016/0020-7683(83)90051-3
9.
Kinra
, V
.
,
Henderson
,
B.
, and
Maslov
,
K.
,
1999
, “
Elastodynamic Response of Layers of Spherical Particles in Hexagonal and Square Periodic Arrangements
,”
J. Mech. Phys. Solids
,
47
(
10
), pp.
2147
2170
.10.1016/S0022-5096(99)00013-7
10.
Maslov
,
K.
, and
Kinra
, V
.
,
1999
, “
Acoustic Response of a Periodic Layer of Nearly Rigid Spherical Inclusions in an Elastic Solid
,”
J. Acoust. Soc. Am.
,
106
(
6
), pp.
3081
3088
.10.1121/1.428161
11.
Mylavarapu
,
P.
, and
Woldesenbet
,
E.
,
2008
, “
Characterization of Syntactic Foams—An Ultrasonic Approach
,”
J. Cell. Plast.
,
44
(
3
), pp.
203
222
.10.1177/0021955X07087330
12.
Rohatgi
,
P.
,
Matsunaga
,
T.
, and
Gupta
,
N.
,
2009
, “
Compressive and Ultrasonic Properties of Polyester/Fly Ash Composites
,”
J. Mater. Sci.
,
44
(
6
), pp.
1485
1493
.10.1007/s10853-008-3165-1
13.
El-Hadek
,
M.
, and
Tippur
,
H.
,
2003
, “
Dynamic Fracture Parameters and Constraint Effects in Functionally Graded Syntactic Epoxy Foams
,”
Int. J. Solids Struct.
,
40
(
8
), pp.
1885
1906
.10.1016/S0020-7683(03)00028-3
14.
d'Almeida
,
J.
,
1999
, “
An Analysis of the Effect of the Diameters of Glass Microspheres on the Mechanical Behavior of Glass-Microsphere/Epoxy-Matrix Composites
,”
Compos. Sci. Technol.
,
59
(
14
), pp.
2087
2091
.10.1016/S0266-3538(99)00066-4
15.
Gupta
,
N.
, and
Ricci
,
W.
,
2006
, “
Comparison of Compressive Properties of Layered Syntactic Foams Having Gradient in Microballoon Volume Fraction and Wall Thickness
,”
Mater. Sci. Eng., A
,
427
(
1–2
), pp.
331
342
.10.1016/j.msea.2006.04.078
16.
Gupta
,
N.
,
Ye
,
R.
, and
Porfiri
,
M.
,
2010
, “
Comparison of Tensile and Compressive Characteristics of Vinyl Ester/Glass Microballoon Syntactic Foams
,”
Composites, Part B
,
41
(
3
), pp.
236
245
.10.1016/j.compositesb.2009.07.004
17.
Woldesenbet
,
E.
,
Gupta
,
N.
, and
Jerro
,
H.
,
2005
, “
Effect of Microballoon Radius Ratio on Syntactic Foam Core Sandwich Composites
,”
J. Sandwich Struct. Mater.
,
7
(
2
), pp.
95
111
.10.1177/1099636205047560
18.
Gupta
,
N.
,
Woldesenbet
,
E.
, and
Mensah
,
P.
,
2004
, “
Compression Properties of Syntactic Foams: Effect of Cenosphere Radius Ratio and Specimen Aspect Ratio
,”
Composites, Part A
,
35
(
1
), pp.
103
111
.10.1016/j.compositesa.2003.08.001
19.
Tsai
,
S.
,
1988
,
Composite Design
, 4th ed.,
Think Composites
,
Dayton, OH
.
20.
ASTM International
,
2005
, “
Standard Practice for Measurement of the Apparent Attenuation of Longitudinal Ultrasonic Waves by Immersion Method
,” Standard No. E664-93, A.
21.
ASTM International
,
2010
, “
Standard Test Method for Compressive Properties of Rigid Plastics
,” Standard No. D695-10, A.
22.
Yamakawa
,
N.
,
1962
, “
Scattering and Attenuation of Elastic Waves—I and II
,”
Geophys. Mag.
,
31
, pp.
63
103
.
23.
Bardella
,
L.
, and
Genna
,
F.
,
2001
, “
On the Elastic Behavior of Syntactic Foams
,”
Int. J. Solids Struct.
,
38
(
40–41
), pp.
7235
7260
.10.1016/S0020-7683(00)00228-6
You do not currently have access to this content.