The degradation of elastic stiffness is investigated systematically within the framework of continuum damage mechanics. Consistent equations are obtained showing how the degradation of elastic stiffness can be decomposed into a part due to cracks and another part due to voids. For this purpose, the hypothesis of elastic energy equivalence of order n is utilized. In addition, it is shown that the hypothesis of elastic strain equivalence is obtained as a special case of the hypothesis of elastic energy equivalence of order n. In the first part of this work, the formulation is scalar and applies to the one-dimensional case. The tensorial formulation for the decomposition is also presented that is applicable to general states of deformation and damage. In this general case, one cannot obtain a single explicit tensorial decomposition equation for elastic stiffness degradation. Instead, one obtains an implicit system of three tensorial decomposition equations (called the tensorial decomposition system). Finally, solution of the tensorial decomposition system is illustrated in detail for the special case of plane stress.

References

1.
Kachanov
,
L.
,
1958
, “
On the Creep Fracture Time
,”
Izv. Akad. Nauk. USSR Otd. Tech.
,
8
, pp.
26
31
(in Russian).
2.
Lee
,
H.
,
Peng
,
K.
, and
Wang
,
J.
,
1985
, “
An Anisotropic Damage Criterion for Deformation Instability and Its Application to Forming Limit Analysis of Metal Plates
,”
Eng. Fract. Mech.
,
21
(5), pp.
1031
1054
.
3.
Voyiadjis
,
G. Z.
, and
Kattan
,
P. I.
,
1992
, “
A Plasticity-Damage Theory for Large Deformation of Solids—Part I: Theoretical Formulation
,”
Int. J. Eng. Sci.
,
30
(
9
), pp.
1089
1108
.
4.
Voyiadjis
,
G. Z.
, and
Kattan
,
P. I.
,
2005
,
Damage Mechanics
,
Taylor and Francis (CRC Press)
,
Boca Raton, FL
.
5.
Voyiadjis
,
G. Z.
, and
Kattan
,
P. I.
,
2006
,
Advances in Damage Mechanics: Metals and Metal Matrix Composites With an Introduction to Fabric Tensors
, 2nd ed.,
Elsevier
,
Amsterdam, The Netherlands
.
6.
Voyiadjis
,
G. Z.
, and
Kattan
,
P. I.
,
2009
, “
A Comparative Study of Damage Variables in Continuum Damage Mechanics
,”
Int. J. Damage Mech.
,
18
(
4
), pp.
315
340
.
7.
Sidoroff
,
F.
,
1981
, “
Description of Anisotropic Damage Application in Elasticity
,”
IUTAM
Colloqium on Physical Nonlinearities in Structural Analysis
, France, May 27–30,
Springer-Verlag
,
Berlin
, pp.
237
244
.
8.
Krajcinovic
,
D.
,
1996
,
Damage Mechanics
,
North Holland
,
Amsterdam, The Netherlands
, p.
776
.
9.
Kattan
,
P. I.
, and
Voyiadjis
,
G. Z.
,
1993
, “
A Plasticity-Damage Theory for Large Deformation of Solids—Part II: Applications to Finite Simple Shear
,”
Int. J. Eng. Sci.
,
31
(
1
), pp.
183
199
.
10.
Kattan
,
P. I.
, and
Voyiadjis
,
G. Z.
,
2001
, “
Decomposition of Damage Tensor in Continuum Damage Mechanics
,”
ASCE J. Eng. Mech.
,
127
(
9
), pp.
940
944
.
11.
Kattan
,
P. I.
, and
Voyiadjis
,
G. Z.
,
2001
,
Damage Mechanics With Finite Elements: Practical Applications With Computer Tools
,
Springer-Verlag
,
Berlin
.
12.
Rabotnov
,
Y.
,
1969
, “
Creep Rupture
,”
Twelfth International Congress of Applied Mechanics
,
M.
Hetenyi
and
W. G.
Vincenti
, eds.,
Stanford, CA
,
Springer-Verlag, Berlin
, pp.
342
349
.
13.
Ladeveze
,
P.
, and
Lemaitre
,
J.
,
1984
, “
Damage Effective Stress in Quasi-Unilateral Conditions
,”
16th International Congress of Theoretical and Applied Mechanics
,
Lyngby
,
Denmark
.
14.
Voyiadjis
,
G. Z.
, and
Kattan
,
P. I.
,
2012
, “
Mechanics of Damage Processes in Series and in Parallel: A Conceptual Framework
,”
Acta Mech.
,
223
(
9
), pp.
1863
1878
.
15.
Celentano
,
D. J.
,
Tapia
,
P. E.
, and
Chaboche
,
J.-L.
,
2004
, “
Experimental and Numerical Characterization of Damage Evolution in Steels
,”
Mec. Comput.
,
23
(10–11), pp. 1739–1762.
16.
Doghri
,
I.
,
2000
,
Mechanics of Deformable Solids: Linear and Nonlinear, Analytical and Computational Aspects
,
Springer-Verlag
,
Berlin
.
17.
Hansen
,
N. R.
, and
Schreyer
,
H. L.
,
1994
, “
A Thermodynamically Consistent Framework for Theories of Elastoplasticity Coupled With Damage
,”
Int. J. Solids Struct.
,
31
(
3
), pp.
359
389
.
18.
Kattan
,
P. I.
, and
Voyiadjis
,
G. Z.
,
1990
, “
A Coupled Theory of Damage Mechanics and Finite Strain Elasto-Plasticity—Part I: Damage and Elastic Deformations
,”
Int. J. Eng. Sci.
,
28
(
5
), pp.
421
435
.
19.
Ladeveze
,
P.
,
Poss
,
M.
, and
Proslier
,
L.
,
1982
, “
Damage and Fracture of Tridirectional Composites
,”
Progress in Science and Engineering of Composites, Fourth International Conference on Composite Materials
, Japan Society for Composite Materials, Vol.
1
, pp.
649
658
.
20.
Lubineau
,
G.
,
2010
, “
A Pyramidal Modeling Scheme for Laminates—Identification of Transverse Cracking
,”
Int. J. Damage Mech.
,
19
(
4
), pp.
499
518
.
21.
Lubineau
,
G.
, and
Ladeveze
,
P.
,
2008
, “
Construction of a Micromechanics-Based Intralaminar Mesomodel, and Illustrations in ABAQUS/Standard
,”
Comput. Mater. Sci.
,
43
(
1
), pp.
137
145
.
22.
Luccioni
,
B.
, and
Oller
,
S.
,
2003
, “
A Directional Damage Model
,”
Comput. Methods Appl. Mech. Eng.
,
192
(
9–10
), pp.
1119
1145
.
23.
Rice
,
J. R.
,
1971
, “
Inelastic Constitutive Relations for Solids: An Internal Variable Theory and Its Application to Metal Plasticity
,”
J. Mech. Phys. Solids
,
19
(
6
), pp.
433
455
.
24.
Voyiadjis
,
G. Z.
,
1988
, “
Degradation of Elastic Modulus in Elastoplastic Coupling With Finite Strains
,”
Int. J. Plast.
,
4
(
4
), pp.
335
353
.
25.
Voyiadjis
,
G. Z.
, and
Kattan
,
P. I.
,
1990
, “
A Coupled Theory of Damage Mechanics and Finite Strain Elasto-Plasticity—Part II: Damage and Finite Strain Plasticity
,”
Int. J. Eng. Sci.
,
28
(
6
), pp.
505
524
.
26.
Basaran
,
C.
, and
Yan
,
C. Y.
,
1998
, “
A Thermodynamic Framework for Damage Mechanics of Solder Joints
,”
ASME J. Electron. Packag.
,
120
(
4
), pp.
379
384
.
27.
Basaran
,
C.
, and
Nie
,
S.
,
2004
, “
An Irreversible Thermodynamic Theory for Damage Mechanics of Solids
,”
Int. J. Damage Mech.
,
13
(
3
), pp.
205
224
.
28.
Cai
,
M.
, and
Horii
,
H.
,
1992
, “
A Constitutive Model of Highly Jointed Rock Masses
,”
Mech. Mater.
,
13
(
3
), pp.
217
246
.
29.
Nichols
,
J. M.
, and
Abell
,
A. B.
,
2003
, “
Implementing the Degrading Effective Stiffness of Masonry in a Finite Element Model
,”
North American Masonry Conference
, Clemson, SC.
30.
Nichols
,
J. M.
, and
Totoev
,
Y. Z.
,
1999
, “
Experimental Investigation of the Damage Mechanics of Masonry Under Dynamic In-Plane Loads
,”
North American Masonry Conference
, Austin, TX.
31.
Voyiadjis
,
G. Z.
, and
Kattan
,
P. I.
,
2012
, “
A New Class of Damage Variables in Continuum Damage Mechanics
,”
ASME J. Mater. Technol
,
134
(
2
), p.
021016
.
32.
Voyiadjis
,
G. Z.
, and
Kattan
,
P. I.
,
2012
, “
On the Theory of Elastic Undamageable Materials
,”
ASME J. Mater. Technol.
,
135
(
2
), p.
021002
.
33.
Voyiadjis
,
G. Z.
, and
Kattan
,
P. I.
,
2013
, “
Introduction to the Mechanics and Design of Undamageable Materials
,”
Int. J. Damage Mech.
,
22
(
3
), pp.
323
335
.
34.
Voyiadjis
,
G. Z.
, and
Kattan
,
P. I.
,
2014
, “
Healing and Super Healing in Continuum Damage Mechanics
,”
Int. J. Damage Mech.
,
23
(
2
), pp.
245
260
.
35.
Voyiadjis
,
G. Z.
, and
Kattan
,
P. I.
,
2014
, “
Governing Differential Equations for the Mechanics of Undamageable Materials
,”
Eng. Trans.
,
62
(
3
), pp.
241
267
.
36.
Gurson
,
A. L.
,
1977
, “
Continuum Theory of Ductile Rupture by Void Nucleation and Growth—Part 1: Yield Criteria and Flow Rules for Porous Ductile Media
,”
Int. J. Eng. Mater. Technol.
,
99
(
2
), pp.
2
15
.
You do not currently have access to this content.