The authors simulated the industrially used continuous annealing conditions to process dual phase (DP) steels by using a custom designed annealing simulator. Sixty-seven percentage of cold rolled steel sheets was subjected to different processing routes, including the conventional continuous annealing line (CAL), intercritical annealing (ICA), and thermal cycling (TC), to investigate the effect of change in volume fraction, shape, and spatial distribution of martensite on tensile deformation characteristics of DP steels. Annealing parameters were derived using commercial software, including thermo-calc, jmat-pro, and dictra. Through selection of appropriate process parameters, the authors found out possibilities of significantly altering the volume fraction, morphology, and grain size distribution of martensite phase. These constituent variations showed a strong influence on tensile properties of DP steels. It was observed that TC route modified the martensite morphology from the typical lath type to in-grain globular/oblong type and significantly reduced the martensite grain size. This route improved the strength–ductility combination from 590 MPa–33% (obtained through CAL route) to 660 MPa–30%. Finally, the underlying mechanisms of crack initiation/void formation, etc., in different DP microstructures were discussed.

References

1.
Kuziak
,
R.
,
Kawalla
,
R.
, and
Waengler
,
S.
,
2008
, “
Advanced High Strength Steels for Automotive Industry
,”
Arch. Civ. Mech. Eng.
,
8
(
2
), pp.
103
117
.
2.
Kwon
,
O.
,
Lee
,
K.
,
Kim
,
G.
, and
Chin
,
K. G.
,
2010
, “
New Trends in Advanced High Strength Steel Developments for Automotive Application
,”
Mater. Sci. Forum
,
638–642
, pp.
136
141
.
3.
Matlock
,
D. K.
,
Speer
,
J. G.
,
Moor
,
E. D.
, and
Gibbs
,
P. J.
,
2012
, “
Recent Developments in Advanced High Strength Sheet Steels for Automotive Applications: An Overview
,”
JESTECH
,
15
(1), pp.
1
12
.https://www.academia.edu/10351259/RECENT_DEVELOPMENTS_IN_ADVANCED_HIGH_STRENGTH_SHEET_STEELS_FOR_AUTOMOTIVE_APPLICATIONS_AN_OVERVIEW
4.
Nanda
,
T.
,
Singh
,
V.
,
Singh
,
V.
,
Chakraborty
,
A.
, and
Sharma
,
S.
,
2016
, “
Third Generation of Advanced High-Strength Steels: Processing Routes and Properties
,”
Proc. Inst. Mech. Eng. L
, epub.
5.
Panda
,
S. K.
,
Sreenivasan
,
N.
,
Kuntz
,
M. L.
, and
Zhou
,
Y.
,
2008
, “
Numerical Simulations and Experimental Results of Tensile Test Behavior of Laser Butt Welded DP980 Steels
,”
ASME J. Eng. Mater.
,
130
(
4
), p.
041003
.
6.
Calcagnotto
,
M.
,
Ponge
,
D.
, and
Rabbe
,
D.
,
2010
, “
Effect of Grain Refinement to 1 μm on Strength and Toughness of Dual-Phase Steels
,”
Mater. Sci. Eng. A
,
527
(29–30), pp.
7832
7840
.
7.
Choi
,
K. S.
,
Liu
,
W. N.
,
Sun
,
X.
,
Khaleel
,
M. A.
, and
Fekete
,
J. R.
,
2009
, “
Influence of Manufacturing Processes and Microstructures on the Performance and Manufacturability of Advanced High Strength Steels
,”
ASME J. Eng. Mater.
,
131
(
4
), p.
041205
.
8.
Nakaoka
,
K.
,
Hosoya
,
Y.
,
Ohmura
,
M.
, and
Nishimoto
,
A.
,
1979
, “
Reassessment of Water Quenching Process as a Means of Producing Formable Steel Sheets
,” Symposium Sponsored by the TMS-AIME Heat Treatment Committee at the AIME Annual Meeting, New Orleans, LA, Feb. 19–21, pp.
330
345
.
9.
Davies
,
R. G.
,
1978
, “
The Deformation Behavior of Vanadium-Strengthened Dual Phase Steel
,”
Metall. Trans. A
,
9
(
1
), pp.
41
52
.
10.
Erdogan
,
M.
, and
Tekeli
,
S.
,
2002
, “
The Effect of Martensite Particle Size on Tensile Fracture of Surface-Carburised AISI, 8620 Steel With Dual Phase Core Microstructure
,”
Mater. Des.
,
23
(
7
), pp.
597
604
.
11.
Ramazani
,
A.
,
Ebrahimi
,
Z.
, and
Prahl
,
U.
,
2014
, “
Study the Effect of Martensite Banding on the Failure Initiation in Dual-Phase Steel
,”
Comp. Mater. Sci.
,
87
, pp.
241
247
.
12.
Singh
,
S.
,
Nanda
,
T.
,
Kumar
,
B. R.
, and
Singh
,
V.
,
2016
, “
Controlled Phase Transformation Simulations to Design Microstructure for Tailored Mechanical Properties in Steel
,”
Mater. Manuf. Process
,
31
(
15
), pp.
2064
2075
.
13.
Mittal
,
M.
,
Nanda
,
T.
,
Kumar
,
B. R.
, and
Singh
,
V.
,
2016
, “
Effect of Inter-Critical Annealing Parameters on Ferrite Recrystallization and Austenite Formation in DP 590 Steel
,”
Mater. Manuf. Process.
, 32(11), pp. 1231–1238.
14.
Cai
,
X.
,
Liu
,
C.
, and
Liu
,
Z.
,
2014
, “
Process Design and Prediction of Mechanical Properties of Dual Phase Steels With Prepositional Ultra-Fast Cooling
,”
Mater. Des.
,
53
, pp.
998
1004
.
15.
Pierman
,
A. P.
,
Bouaziz
,
O.
,
Pardoen
,
T.
,
Jacques
,
P. J.
, and
Brassart
,
L.
,
2014
, “
The Influence of Microstructure and Composition on the Plastic Behaviour of Dual-Phase Steels
,”
Acta Mater.
,
73
, pp.
298
311
.
16.
Wang
,
W.
, and
Wei
,
X.
,
2013
, “
The Effect of Martensite Volume and Distribution on Shear Fracture Propagation of 600–1000 MPa Dual Phase Steels in the Process of Deep Drawing
,”
Int. J. Mech. Sci.
,
67
, pp.
100
107
.
17.
Nie
,
W. J.
,
Wang
,
X. M.
,
Wu
,
S. J.
,
Guan
,
H. L.
, and
Shang
,
C. J.
,
2012
, “
Stress-Strain Behavior of Multi-Phase High Performance Structural Steel
,”
Sci. China Technol.
,
55
(
7
), pp.
1791
1796
.
18.
Jiang
,
Z.
,
Guan
,
Z.
, and
Lian
,
J.
,
1995
, “
Effects of Microstructural Variables on the Deformation Behaviour of Dual-Phase Steel
,”
Mater. Sci. Eng. A
,
190
(1–2), pp.
55
64
.
19.
Calcagnotto
,
M.
,
Ponge
,
D.
, and
Rabbe
,
D.
,
2012
, “
Microstructure Control During Fabrication of Ultrafine Grained Dual-Phase Steel: Characterization and Effect of Intercritical Annealing Parameters
,”
ISIJ Int.
,
52
(
5
), pp.
874
883
.
20.
Huseyin
,
K. Z.
, and
Havva
,
K. C.
,
2010
, “
Effect of Inter-Critical Annealing Parameters on Dual-Phase Behavior of Commercial Low-Alloyed Steels
,”
J. Iron Steel Res. Int.
,
17
(
4
), pp.
73
78
.
21.
Shen
,
H. P.
,
Lei
,
T. C.
, and
Liu
,
J. Z.
,
1986
, “
Microscopic Deformation Behaviour of Martensitic–Ferritic Dual-Phase Steels
,”
Mater. Sci. Technol.
,
2
(
1
), pp.
28
33
.
22.
Kang
,
J.
,
Ososkov
,
Y.
,
Embury
,
J. D.
, and
Wilkinson
,
D. S.
,
2007
, “
Digital Image Correlation Studies for Microscopic Strain Distribution and Damage in Dual Phase
,”
Scr. Mater.
,
56
(
11
), pp.
999
1002
.
23.
Singh
,
V.
,
2015
, “
Effect of Martensite Morphology on the Tensile Deformation Behavior of a DP590 Steel
,”
Master thesis
, Thapar University, Patiala, India.http://dspace.thapar.edu:8080/jspui/handle/10266/3644
24.
Ghadbeigi
,
H.
,
Pinna
,
C.
,
Celotto
,
S.
, and
Yates
,
J. R.
,
2010
, “
Local Plastic Strain Evolution in a High Strength Dual Phase Steel
,”
Mater. Sci. Eng. A
,
527
(18–19), pp.
5026
5032
.
25.
Kapp
,
M.
,
Hebesberger
,
T.
, and
Kolednik
,
O.
,
2011
, “
A Micro-Level Strain Analysis of a High-Strength Dual-Phase Steel
,”
Int. J. Mater. Res.
,
102
(
6
), pp.
687
691
.
26.
Joo
,
S. H.
,
Lee
,
J. K.
,
Koo
,
J. M.
,
Lee
,
S.
,
Suh
,
D. W.
, and
Kim
,
H. S.
,
2013
, “
Local Strain in Dual Phase Steel Using Digital Image Correlation With Nanodots
,”
Scr. Mater.
,
68
(
5
), pp.
245
248
.
27.
Marteau
,
J.
,
Haddadi
,
H.
, and
Bouvier
,
S.
,
2012
, “
Investigation of Strain Heterogeneities Between Grains in Ferritic and Ferritic–Martensitic Steels
,”
Exp. Mech.
,
53
(3), pp.
427
439
.
28.
Han
,
Q.
,
Kang
,
Y.
,
Hodgson
,
P. D.
, and
Stanford
,
N.
,
2013
, “
Quantitative Measurement of Strain Partitioning and Slip Systems in a Dual-Phase Steel
,”
Scr. Mater.
,
69
(
1
), pp.
13
16
.
29.
Tasan
,
C. C.
,
Hoefnagels
,
J. P. M.
,
Diehl
,
M.
,
Yan
,
D.
,
Roters
,
F.
, and
Raabe
,
D.
,
2014
, “
Strain Localization and Damage in Dual Phase Steels Investigated by Coupled In-Situ Deformation Experiments and Crystal Plasticity Simulations
,”
Int. J. Plast.
,
63
, pp.
198
210
.
30.
Sharma
,
S.
,
Nanda
,
T.
,
Adhikary
,
M.
,
Venugopalan
,
T.
, and
Kumar
,
B. R.
,
2016
, “
A Simulation Study of Pearlite-to-Austenite Transformation Kinetics in Rapidly Heated Hot-Rolled Low Carbon Steel
,”
Mater. Des.
,
107
, pp.
65
73
.
31.
Szewczyk
,
A. F.
, and
Gurland
,
J.
,
1982
, “
A Study of the Deformation and Fracture of a Dual-Phase Steel
,”
Metall. Trans. A
,
13
(
10
), pp.
1821
1826
.
32.
Maresca
,
F.
,
Kouznetsova
,
V.
, and
Geers
,
M. G. D.
,
2014
, “
Subgrain Lath Martensite Mechanics: A Numerical–Experimental Analysis
,”
J. Mech. Phys. Solids
,
73
, pp.
69
83
.
33.
Yuan
,
L.
,
Ponge
,
D.
,
Wittig
,
J.
,
Choi
,
P.
,
Jimenez
,
J. A.
, and
Raabe
,
D.
,
2012
, “
Nanoscale Austenite Reversion Through Partitioning, Segregation and Kinetic Freezing: Example of a Ductile 2 GPa Fe–Cr–C Steel
,”
Acta Mater.
,
60
(6–7), pp.
2790
2804
.
34.
Kumar
,
B. R.
,
Mahato
,
B.
,
Sharma
,
S.
, and
Sahu
,
J. K.
,
2009
, “
Effect of Cyclic Thermal Process on Ultrafine Grain Formation in AISI 304L Austenitic Stainless Steel
,”
Metall. Mater. Trans. A
,
40
(
13
), pp.
3226
3234
.
35.
Kumar
,
B. R.
,
Das
,
S. K.
,
Sharma
,
S.
, and
Sahu
,
J. K.
,
2010
, “
Effect of Thermal Cycles on Heavily Cold Deformed AISI 304L Austenitic Stainless Steel
,”
Mater. Sci. Eng. A
,
527
(4–5), pp.
875
882
.
36.
Nanda
,
T.
,
Kumar
,
B. R.
, and
Singh
,
V.
,
2016
, “
A Thermal Cycling Route for Processing Nano-Grains in AISI 316L Stainless Steel for Improved Tensile Deformation Behavior
,”
Defence Sci. J.
,
66
(
5
), pp.
529
535
.
37.
Krishnan
,
K.
,
Sahay
,
S. S.
,
Singh
,
S.
, and
Pal
,
D.
,
2006
, “
Modeling the Accelerated Cyclic Annealing Kinetics
,”
J. Appl. Phys.
,
100
(9), p. 093505.
38.
Chakraborty
,
A.
,
Adhikary
,
M.
,
Venugopalan
,
T.
,
Singh
,
V.
,
Nanda
,
T.
, and
Kumar
,
B. R.
,
2016
, “
Effect of Ferrite-Martensite Interface Morphology on Bake Hardening Response of DP590 Steel
,”
Mater. Sci. Eng. A
,
676
, pp.
463
473
.
39.
Ghassemi-Armaki
,
H.
,
Maaß
,
R.
,
Bhat
,
S. P.
,
Sriram
,
S.
,
Greer
,
J. R.
, and
Kumar
,
K. S.
,
2014
, “
Deformation Response of Ferrite and Martensite in a Dual-Phase Steel
,”
Acta Mater.
,
62
, pp.
197
211
.
40.
Maire
,
E.
,
Bouaziz
,
O.
,
Michiel
,
M. D.
, and
Verdu
,
C.
,
2008
, “
Initiation and Growth of Damage in a Dual-Phase Steel Observed by X-Ray Microtomography
,”
Acta Mater.
,
56
(18), pp.
4954
4964
.
41.
Steinbrunner
,
D. L.
,
Matlock
,
D. K.
, and
Krauss
,
G.
,
1988
, “
Void Formation During Tensile Testing of Dual Phase Steels
,”
Metall. Trans. A
,
19
(
3
), pp.
579
589
.
42.
Azuma
,
M.
,
Goutianos
,
S.
,
Hansen
,
N.
,
Winther
,
G.
, and
Huang
,
X.
,
2012
, “
Effect of Hardness of Martensite and Ferrite on Void Formation in Dual Phase Steel
,”
Mater. Sci. Technol.
,
28
(9–10), pp.
1092
1100
.
You do not currently have access to this content.